Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

-6t^{2}-2t+5+4t+6
Combine t^{2} and -7t^{2} to get -6t^{2}.
-6t^{2}+2t+5+6
Combine -2t and 4t to get 2t.
-6t^{2}+2t+11
Add 5 and 6 to get 11.
factor(-6t^{2}-2t+5+4t+6)
Combine t^{2} and -7t^{2} to get -6t^{2}.
factor(-6t^{2}+2t+5+6)
Combine -2t and 4t to get 2t.
factor(-6t^{2}+2t+11)
Add 5 and 6 to get 11.
-6t^{2}+2t+11=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-2±\sqrt{2^{2}-4\left(-6\right)\times 11}}{2\left(-6\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-2±\sqrt{4-4\left(-6\right)\times 11}}{2\left(-6\right)}
Square 2.
t=\frac{-2±\sqrt{4+24\times 11}}{2\left(-6\right)}
Multiply -4 times -6.
t=\frac{-2±\sqrt{4+264}}{2\left(-6\right)}
Multiply 24 times 11.
t=\frac{-2±\sqrt{268}}{2\left(-6\right)}
Add 4 to 264.
t=\frac{-2±2\sqrt{67}}{2\left(-6\right)}
Take the square root of 268.
t=\frac{-2±2\sqrt{67}}{-12}
Multiply 2 times -6.
t=\frac{2\sqrt{67}-2}{-12}
Now solve the equation t=\frac{-2±2\sqrt{67}}{-12} when ± is plus. Add -2 to 2\sqrt{67}.
t=\frac{1-\sqrt{67}}{6}
Divide -2+2\sqrt{67} by -12.
t=\frac{-2\sqrt{67}-2}{-12}
Now solve the equation t=\frac{-2±2\sqrt{67}}{-12} when ± is minus. Subtract 2\sqrt{67} from -2.
t=\frac{\sqrt{67}+1}{6}
Divide -2-2\sqrt{67} by -12.
-6t^{2}+2t+11=-6\left(t-\frac{1-\sqrt{67}}{6}\right)\left(t-\frac{\sqrt{67}+1}{6}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1-\sqrt{67}}{6} for x_{1} and \frac{1+\sqrt{67}}{6} for x_{2}.