Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. t
Tick mark Image

Similar Problems from Web Search

Share

\sqrt[3]{t^{\frac{3}{7}}}
Use the rules of exponents to simplify the expression.
t^{\frac{3}{7}\times \frac{1}{3}}
To raise a power to another power, multiply the exponents.
\sqrt[7]{t}
Multiply \frac{3}{7} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
\frac{1}{3}\left(t^{\frac{3}{7}}\right)^{\frac{1}{3}-1}\frac{\mathrm{d}}{\mathrm{d}t}(t^{\frac{3}{7}})
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\frac{1}{3}\left(t^{\frac{3}{7}}\right)^{-\frac{2}{3}}\times \frac{3}{7}t^{\frac{3}{7}-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{1}{7}t^{-\frac{4}{7}}\left(t^{\frac{3}{7}}\right)^{-\frac{2}{3}}
Simplify.