Evaluate
\left(s+1\right)\left(4s+t+3\right)
Expand
4s^{2}+st+7s+t+3
Share
Copied to clipboard
\left(s+t\right)\left(s+1\right)+\left(s+1\right)^{2}+2\left(s+1\right)\left(s+1\right)
Multiply s+1 and s+1 to get \left(s+1\right)^{2}.
\left(s+t\right)\left(s+1\right)+\left(s+1\right)^{2}+2\left(s+1\right)^{2}
Multiply s+1 and s+1 to get \left(s+1\right)^{2}.
s^{2}+s+ts+t+\left(s+1\right)^{2}+2\left(s+1\right)^{2}
Apply the distributive property by multiplying each term of s+t by each term of s+1.
s^{2}+s+ts+t+s^{2}+2s+1+2\left(s+1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(s+1\right)^{2}.
2s^{2}+s+ts+t+2s+1+2\left(s+1\right)^{2}
Combine s^{2} and s^{2} to get 2s^{2}.
2s^{2}+3s+ts+t+1+2\left(s+1\right)^{2}
Combine s and 2s to get 3s.
2s^{2}+3s+ts+t+1+2\left(s^{2}+2s+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(s+1\right)^{2}.
2s^{2}+3s+ts+t+1+2s^{2}+4s+2
Use the distributive property to multiply 2 by s^{2}+2s+1.
4s^{2}+3s+ts+t+1+4s+2
Combine 2s^{2} and 2s^{2} to get 4s^{2}.
4s^{2}+7s+ts+t+1+2
Combine 3s and 4s to get 7s.
4s^{2}+7s+ts+t+3
Add 1 and 2 to get 3.
\left(s+t\right)\left(s+1\right)+\left(s+1\right)^{2}+2\left(s+1\right)\left(s+1\right)
Multiply s+1 and s+1 to get \left(s+1\right)^{2}.
\left(s+t\right)\left(s+1\right)+\left(s+1\right)^{2}+2\left(s+1\right)^{2}
Multiply s+1 and s+1 to get \left(s+1\right)^{2}.
s^{2}+s+ts+t+\left(s+1\right)^{2}+2\left(s+1\right)^{2}
Apply the distributive property by multiplying each term of s+t by each term of s+1.
s^{2}+s+ts+t+s^{2}+2s+1+2\left(s+1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(s+1\right)^{2}.
2s^{2}+s+ts+t+2s+1+2\left(s+1\right)^{2}
Combine s^{2} and s^{2} to get 2s^{2}.
2s^{2}+3s+ts+t+1+2\left(s+1\right)^{2}
Combine s and 2s to get 3s.
2s^{2}+3s+ts+t+1+2\left(s^{2}+2s+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(s+1\right)^{2}.
2s^{2}+3s+ts+t+1+2s^{2}+4s+2
Use the distributive property to multiply 2 by s^{2}+2s+1.
4s^{2}+3s+ts+t+1+4s+2
Combine 2s^{2} and 2s^{2} to get 4s^{2}.
4s^{2}+7s+ts+t+1+2
Combine 3s and 4s to get 7s.
4s^{2}+7s+ts+t+3
Add 1 and 2 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}