Evaluate
3\left(r-6\right)\left(4r-1\right)\left(r+3\right)
Expand
12r^{3}-39r^{2}-207r+54
Share
Copied to clipboard
\left(12r^{2}-3r-72r+18\right)\left(r+3\right)
Apply the distributive property by multiplying each term of r-6 by each term of 12r-3.
\left(12r^{2}-75r+18\right)\left(r+3\right)
Combine -3r and -72r to get -75r.
12r^{3}+36r^{2}-75r^{2}-225r+18r+54
Apply the distributive property by multiplying each term of 12r^{2}-75r+18 by each term of r+3.
12r^{3}-39r^{2}-225r+18r+54
Combine 36r^{2} and -75r^{2} to get -39r^{2}.
12r^{3}-39r^{2}-207r+54
Combine -225r and 18r to get -207r.
\left(12r^{2}-3r-72r+18\right)\left(r+3\right)
Apply the distributive property by multiplying each term of r-6 by each term of 12r-3.
\left(12r^{2}-75r+18\right)\left(r+3\right)
Combine -3r and -72r to get -75r.
12r^{3}+36r^{2}-75r^{2}-225r+18r+54
Apply the distributive property by multiplying each term of 12r^{2}-75r+18 by each term of r+3.
12r^{3}-39r^{2}-225r+18r+54
Combine 36r^{2} and -75r^{2} to get -39r^{2}.
12r^{3}-39r^{2}-207r+54
Combine -225r and 18r to get -207r.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}