Solve for r
r=\frac{-3\sqrt{3}i+1}{2}\approx 0.5-2.598076211i
r=\frac{1+3\sqrt{3}i}{2}\approx 0.5+2.598076211i
Share
Copied to clipboard
r-2-r^{2}=5
Subtract r^{2} from both sides.
r-2-r^{2}-5=0
Subtract 5 from both sides.
r-7-r^{2}=0
Subtract 5 from -2 to get -7.
-r^{2}+r-7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
r=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\left(-7\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 1 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-1±\sqrt{1-4\left(-1\right)\left(-7\right)}}{2\left(-1\right)}
Square 1.
r=\frac{-1±\sqrt{1+4\left(-7\right)}}{2\left(-1\right)}
Multiply -4 times -1.
r=\frac{-1±\sqrt{1-28}}{2\left(-1\right)}
Multiply 4 times -7.
r=\frac{-1±\sqrt{-27}}{2\left(-1\right)}
Add 1 to -28.
r=\frac{-1±3\sqrt{3}i}{2\left(-1\right)}
Take the square root of -27.
r=\frac{-1±3\sqrt{3}i}{-2}
Multiply 2 times -1.
r=\frac{-1+3\sqrt{3}i}{-2}
Now solve the equation r=\frac{-1±3\sqrt{3}i}{-2} when ± is plus. Add -1 to 3i\sqrt{3}.
r=\frac{-3\sqrt{3}i+1}{2}
Divide -1+3i\sqrt{3} by -2.
r=\frac{-3\sqrt{3}i-1}{-2}
Now solve the equation r=\frac{-1±3\sqrt{3}i}{-2} when ± is minus. Subtract 3i\sqrt{3} from -1.
r=\frac{1+3\sqrt{3}i}{2}
Divide -1-3i\sqrt{3} by -2.
r=\frac{-3\sqrt{3}i+1}{2} r=\frac{1+3\sqrt{3}i}{2}
The equation is now solved.
r-2-r^{2}=5
Subtract r^{2} from both sides.
r-r^{2}=5+2
Add 2 to both sides.
r-r^{2}=7
Add 5 and 2 to get 7.
-r^{2}+r=7
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-r^{2}+r}{-1}=\frac{7}{-1}
Divide both sides by -1.
r^{2}+\frac{1}{-1}r=\frac{7}{-1}
Dividing by -1 undoes the multiplication by -1.
r^{2}-r=\frac{7}{-1}
Divide 1 by -1.
r^{2}-r=-7
Divide 7 by -1.
r^{2}-r+\left(-\frac{1}{2}\right)^{2}=-7+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
r^{2}-r+\frac{1}{4}=-7+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
r^{2}-r+\frac{1}{4}=-\frac{27}{4}
Add -7 to \frac{1}{4}.
\left(r-\frac{1}{2}\right)^{2}=-\frac{27}{4}
Factor r^{2}-r+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{27}{4}}
Take the square root of both sides of the equation.
r-\frac{1}{2}=\frac{3\sqrt{3}i}{2} r-\frac{1}{2}=-\frac{3\sqrt{3}i}{2}
Simplify.
r=\frac{1+3\sqrt{3}i}{2} r=\frac{-3\sqrt{3}i+1}{2}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}