Solve for r
r=-14
r=12
Share
Copied to clipboard
r\left(r+2\right)=84\times 2
Multiply both sides by 2.
r^{2}+2r=84\times 2
Use the distributive property to multiply r by r+2.
r^{2}+2r=168
Multiply 84 and 2 to get 168.
r^{2}+2r-168=0
Subtract 168 from both sides.
r=\frac{-2±\sqrt{2^{2}-4\left(-168\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 2 for b, and -168 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-2±\sqrt{4-4\left(-168\right)}}{2}
Square 2.
r=\frac{-2±\sqrt{4+672}}{2}
Multiply -4 times -168.
r=\frac{-2±\sqrt{676}}{2}
Add 4 to 672.
r=\frac{-2±26}{2}
Take the square root of 676.
r=\frac{24}{2}
Now solve the equation r=\frac{-2±26}{2} when ± is plus. Add -2 to 26.
r=12
Divide 24 by 2.
r=-\frac{28}{2}
Now solve the equation r=\frac{-2±26}{2} when ± is minus. Subtract 26 from -2.
r=-14
Divide -28 by 2.
r=12 r=-14
The equation is now solved.
r\left(r+2\right)=84\times 2
Multiply both sides by 2.
r^{2}+2r=84\times 2
Use the distributive property to multiply r by r+2.
r^{2}+2r=168
Multiply 84 and 2 to get 168.
r^{2}+2r+1^{2}=168+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
r^{2}+2r+1=168+1
Square 1.
r^{2}+2r+1=169
Add 168 to 1.
\left(r+1\right)^{2}=169
Factor r^{2}+2r+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r+1\right)^{2}}=\sqrt{169}
Take the square root of both sides of the equation.
r+1=13 r+1=-13
Simplify.
r=12 r=-14
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}