Solve for r (complex solution)
r\in \mathrm{C}
Solve for r
r\in \mathrm{R}
Share
Copied to clipboard
\left(r^{2}+2r+1\right)r^{2}\left(2r+1\right)-r^{2}\left(r-1\right)^{2}\left(2r-1\right)=10r^{4}+2r^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(r+1\right)^{2}.
\left(r^{4}+2r^{3}+r^{2}\right)\left(2r+1\right)-r^{2}\left(r-1\right)^{2}\left(2r-1\right)=10r^{4}+2r^{2}
Use the distributive property to multiply r^{2}+2r+1 by r^{2}.
2r^{5}+5r^{4}+4r^{3}+r^{2}-r^{2}\left(r-1\right)^{2}\left(2r-1\right)=10r^{4}+2r^{2}
Use the distributive property to multiply r^{4}+2r^{3}+r^{2} by 2r+1 and combine like terms.
2r^{5}+5r^{4}+4r^{3}+r^{2}-r^{2}\left(r^{2}-2r+1\right)\left(2r-1\right)=10r^{4}+2r^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(r-1\right)^{2}.
2r^{5}+5r^{4}+4r^{3}+r^{2}-\left(r^{4}-2r^{3}+r^{2}\right)\left(2r-1\right)=10r^{4}+2r^{2}
Use the distributive property to multiply r^{2} by r^{2}-2r+1.
2r^{5}+5r^{4}+4r^{3}+r^{2}-\left(2r^{5}-5r^{4}+4r^{3}-r^{2}\right)=10r^{4}+2r^{2}
Use the distributive property to multiply r^{4}-2r^{3}+r^{2} by 2r-1 and combine like terms.
2r^{5}+5r^{4}+4r^{3}+r^{2}-2r^{5}+5r^{4}-4r^{3}+r^{2}=10r^{4}+2r^{2}
To find the opposite of 2r^{5}-5r^{4}+4r^{3}-r^{2}, find the opposite of each term.
5r^{4}+4r^{3}+r^{2}+5r^{4}-4r^{3}+r^{2}=10r^{4}+2r^{2}
Combine 2r^{5} and -2r^{5} to get 0.
10r^{4}+4r^{3}+r^{2}-4r^{3}+r^{2}=10r^{4}+2r^{2}
Combine 5r^{4} and 5r^{4} to get 10r^{4}.
10r^{4}+r^{2}+r^{2}=10r^{4}+2r^{2}
Combine 4r^{3} and -4r^{3} to get 0.
10r^{4}+2r^{2}=10r^{4}+2r^{2}
Combine r^{2} and r^{2} to get 2r^{2}.
10r^{4}+2r^{2}-10r^{4}=2r^{2}
Subtract 10r^{4} from both sides.
2r^{2}=2r^{2}
Combine 10r^{4} and -10r^{4} to get 0.
2r^{2}-2r^{2}=0
Subtract 2r^{2} from both sides.
0=0
Combine 2r^{2} and -2r^{2} to get 0.
\text{true}
Compare 0 and 0.
r\in \mathrm{C}
This is true for any r.
\left(r^{2}+2r+1\right)r^{2}\left(2r+1\right)-r^{2}\left(r-1\right)^{2}\left(2r-1\right)=10r^{4}+2r^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(r+1\right)^{2}.
\left(r^{4}+2r^{3}+r^{2}\right)\left(2r+1\right)-r^{2}\left(r-1\right)^{2}\left(2r-1\right)=10r^{4}+2r^{2}
Use the distributive property to multiply r^{2}+2r+1 by r^{2}.
2r^{5}+5r^{4}+4r^{3}+r^{2}-r^{2}\left(r-1\right)^{2}\left(2r-1\right)=10r^{4}+2r^{2}
Use the distributive property to multiply r^{4}+2r^{3}+r^{2} by 2r+1 and combine like terms.
2r^{5}+5r^{4}+4r^{3}+r^{2}-r^{2}\left(r^{2}-2r+1\right)\left(2r-1\right)=10r^{4}+2r^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(r-1\right)^{2}.
2r^{5}+5r^{4}+4r^{3}+r^{2}-\left(r^{4}-2r^{3}+r^{2}\right)\left(2r-1\right)=10r^{4}+2r^{2}
Use the distributive property to multiply r^{2} by r^{2}-2r+1.
2r^{5}+5r^{4}+4r^{3}+r^{2}-\left(2r^{5}-5r^{4}+4r^{3}-r^{2}\right)=10r^{4}+2r^{2}
Use the distributive property to multiply r^{4}-2r^{3}+r^{2} by 2r-1 and combine like terms.
2r^{5}+5r^{4}+4r^{3}+r^{2}-2r^{5}+5r^{4}-4r^{3}+r^{2}=10r^{4}+2r^{2}
To find the opposite of 2r^{5}-5r^{4}+4r^{3}-r^{2}, find the opposite of each term.
5r^{4}+4r^{3}+r^{2}+5r^{4}-4r^{3}+r^{2}=10r^{4}+2r^{2}
Combine 2r^{5} and -2r^{5} to get 0.
10r^{4}+4r^{3}+r^{2}-4r^{3}+r^{2}=10r^{4}+2r^{2}
Combine 5r^{4} and 5r^{4} to get 10r^{4}.
10r^{4}+r^{2}+r^{2}=10r^{4}+2r^{2}
Combine 4r^{3} and -4r^{3} to get 0.
10r^{4}+2r^{2}=10r^{4}+2r^{2}
Combine r^{2} and r^{2} to get 2r^{2}.
10r^{4}+2r^{2}-10r^{4}=2r^{2}
Subtract 10r^{4} from both sides.
2r^{2}=2r^{2}
Combine 10r^{4} and -10r^{4} to get 0.
2r^{2}-2r^{2}=0
Subtract 2r^{2} from both sides.
0=0
Combine 2r^{2} and -2r^{2} to get 0.
\text{true}
Compare 0 and 0.
r\in \mathrm{R}
This is true for any r.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}