Solve for p (complex solution)
\left\{\begin{matrix}p=-\frac{r^{2}+q^{2}-qr-qx}{x-r}\text{, }&r\neq x\\p\in \mathrm{C}\text{, }&r=x\text{ and }q=r\end{matrix}\right.
Solve for p
\left\{\begin{matrix}p=-\frac{r^{2}+q^{2}-qr-qx}{x-r}\text{, }&r\neq x\\p\in \mathrm{R}\text{, }&r=x\text{ and }q=r\end{matrix}\right.
Solve for q (complex solution)
q=\frac{\sqrt{\left(x-r\right)\left(x+3r-4p\right)}+r+x}{2}
q=\frac{-\sqrt{\left(x-r\right)\left(x+3r-4p\right)}+r+x}{2}
Solve for q
q=\frac{\sqrt{\left(x-r\right)\left(x+3r-4p\right)}+r+x}{2}
q=\frac{-\sqrt{\left(x-r\right)\left(x+3r-4p\right)}+r+x}{2}\text{, }r=x\text{ or }\left(p\neq x\text{ and }r\leq \frac{2\sqrt{x^{2}-2px+p^{2}}+x+2p}{3}\text{ and }r\geq \frac{-2\sqrt{x^{2}-2px+p^{2}}+x+2p}{3}\right)
Share
Copied to clipboard
q^{2}-2qr+r^{2}+\left(r-p\right)^{2}+\left(x-q\right)^{2}=\left(p-x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(q-r\right)^{2}.
q^{2}-2qr+r^{2}+r^{2}-2rp+p^{2}+\left(x-q\right)^{2}=\left(p-x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(r-p\right)^{2}.
q^{2}-2qr+2r^{2}-2rp+p^{2}+\left(x-q\right)^{2}=\left(p-x\right)^{2}
Combine r^{2} and r^{2} to get 2r^{2}.
q^{2}-2qr+2r^{2}-2rp+p^{2}+x^{2}-2xq+q^{2}=\left(p-x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-q\right)^{2}.
2q^{2}-2qr+2r^{2}-2rp+p^{2}+x^{2}-2xq=\left(p-x\right)^{2}
Combine q^{2} and q^{2} to get 2q^{2}.
2q^{2}-2qr+2r^{2}-2rp+p^{2}+x^{2}-2xq=p^{2}-2px+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(p-x\right)^{2}.
2q^{2}-2qr+2r^{2}-2rp+p^{2}+x^{2}-2xq-p^{2}=-2px+x^{2}
Subtract p^{2} from both sides.
2q^{2}-2qr+2r^{2}-2rp+x^{2}-2xq=-2px+x^{2}
Combine p^{2} and -p^{2} to get 0.
2q^{2}-2qr+2r^{2}-2rp+x^{2}-2xq+2px=x^{2}
Add 2px to both sides.
-2qr+2r^{2}-2rp+x^{2}-2xq+2px=x^{2}-2q^{2}
Subtract 2q^{2} from both sides.
2r^{2}-2rp+x^{2}-2xq+2px=x^{2}-2q^{2}+2qr
Add 2qr to both sides.
-2rp+x^{2}-2xq+2px=x^{2}-2q^{2}+2qr-2r^{2}
Subtract 2r^{2} from both sides.
-2rp-2xq+2px=x^{2}-2q^{2}+2qr-2r^{2}-x^{2}
Subtract x^{2} from both sides.
-2rp-2xq+2px=-2q^{2}+2qr-2r^{2}
Combine x^{2} and -x^{2} to get 0.
-2rp+2px=-2q^{2}+2qr-2r^{2}+2xq
Add 2xq to both sides.
\left(-2r+2x\right)p=-2q^{2}+2qr-2r^{2}+2xq
Combine all terms containing p.
\left(2x-2r\right)p=2qx+2qr-2q^{2}-2r^{2}
The equation is in standard form.
\frac{\left(2x-2r\right)p}{2x-2r}=\frac{2qx+2qr-2q^{2}-2r^{2}}{2x-2r}
Divide both sides by 2x-2r.
p=\frac{2qx+2qr-2q^{2}-2r^{2}}{2x-2r}
Dividing by 2x-2r undoes the multiplication by 2x-2r.
p=\frac{qx+qr-q^{2}-r^{2}}{x-r}
Divide -2q^{2}+2qr-2r^{2}+2xq by 2x-2r.
q^{2}-2qr+r^{2}+\left(r-p\right)^{2}+\left(x-q\right)^{2}=\left(p-x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(q-r\right)^{2}.
q^{2}-2qr+r^{2}+r^{2}-2rp+p^{2}+\left(x-q\right)^{2}=\left(p-x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(r-p\right)^{2}.
q^{2}-2qr+2r^{2}-2rp+p^{2}+\left(x-q\right)^{2}=\left(p-x\right)^{2}
Combine r^{2} and r^{2} to get 2r^{2}.
q^{2}-2qr+2r^{2}-2rp+p^{2}+x^{2}-2xq+q^{2}=\left(p-x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-q\right)^{2}.
2q^{2}-2qr+2r^{2}-2rp+p^{2}+x^{2}-2xq=\left(p-x\right)^{2}
Combine q^{2} and q^{2} to get 2q^{2}.
2q^{2}-2qr+2r^{2}-2rp+p^{2}+x^{2}-2xq=p^{2}-2px+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(p-x\right)^{2}.
2q^{2}-2qr+2r^{2}-2rp+p^{2}+x^{2}-2xq-p^{2}=-2px+x^{2}
Subtract p^{2} from both sides.
2q^{2}-2qr+2r^{2}-2rp+x^{2}-2xq=-2px+x^{2}
Combine p^{2} and -p^{2} to get 0.
2q^{2}-2qr+2r^{2}-2rp+x^{2}-2xq+2px=x^{2}
Add 2px to both sides.
-2qr+2r^{2}-2rp+x^{2}-2xq+2px=x^{2}-2q^{2}
Subtract 2q^{2} from both sides.
2r^{2}-2rp+x^{2}-2xq+2px=x^{2}-2q^{2}+2qr
Add 2qr to both sides.
-2rp+x^{2}-2xq+2px=x^{2}-2q^{2}+2qr-2r^{2}
Subtract 2r^{2} from both sides.
-2rp-2xq+2px=x^{2}-2q^{2}+2qr-2r^{2}-x^{2}
Subtract x^{2} from both sides.
-2rp-2xq+2px=-2q^{2}+2qr-2r^{2}
Combine x^{2} and -x^{2} to get 0.
-2rp+2px=-2q^{2}+2qr-2r^{2}+2xq
Add 2xq to both sides.
\left(-2r+2x\right)p=-2q^{2}+2qr-2r^{2}+2xq
Combine all terms containing p.
\left(2x-2r\right)p=2qx+2qr-2q^{2}-2r^{2}
The equation is in standard form.
\frac{\left(2x-2r\right)p}{2x-2r}=\frac{2qx+2qr-2q^{2}-2r^{2}}{2x-2r}
Divide both sides by 2x-2r.
p=\frac{2qx+2qr-2q^{2}-2r^{2}}{2x-2r}
Dividing by 2x-2r undoes the multiplication by 2x-2r.
p=\frac{qx+qr-q^{2}-r^{2}}{x-r}
Divide -2q^{2}+2qr-2r^{2}+2xq by 2x-2r.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}