Skip to main content
Solve for p (complex solution)
Tick mark Image
Solve for p
Tick mark Image
Solve for q (complex solution)
Tick mark Image
Solve for q
Tick mark Image

Similar Problems from Web Search

Share

q^{2}-2qr+r^{2}+\left(r-p\right)^{2}+\left(x-q\right)^{2}=\left(p-x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(q-r\right)^{2}.
q^{2}-2qr+r^{2}+r^{2}-2rp+p^{2}+\left(x-q\right)^{2}=\left(p-x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(r-p\right)^{2}.
q^{2}-2qr+2r^{2}-2rp+p^{2}+\left(x-q\right)^{2}=\left(p-x\right)^{2}
Combine r^{2} and r^{2} to get 2r^{2}.
q^{2}-2qr+2r^{2}-2rp+p^{2}+x^{2}-2xq+q^{2}=\left(p-x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-q\right)^{2}.
2q^{2}-2qr+2r^{2}-2rp+p^{2}+x^{2}-2xq=\left(p-x\right)^{2}
Combine q^{2} and q^{2} to get 2q^{2}.
2q^{2}-2qr+2r^{2}-2rp+p^{2}+x^{2}-2xq=p^{2}-2px+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(p-x\right)^{2}.
2q^{2}-2qr+2r^{2}-2rp+p^{2}+x^{2}-2xq-p^{2}=-2px+x^{2}
Subtract p^{2} from both sides.
2q^{2}-2qr+2r^{2}-2rp+x^{2}-2xq=-2px+x^{2}
Combine p^{2} and -p^{2} to get 0.
2q^{2}-2qr+2r^{2}-2rp+x^{2}-2xq+2px=x^{2}
Add 2px to both sides.
-2qr+2r^{2}-2rp+x^{2}-2xq+2px=x^{2}-2q^{2}
Subtract 2q^{2} from both sides.
2r^{2}-2rp+x^{2}-2xq+2px=x^{2}-2q^{2}+2qr
Add 2qr to both sides.
-2rp+x^{2}-2xq+2px=x^{2}-2q^{2}+2qr-2r^{2}
Subtract 2r^{2} from both sides.
-2rp-2xq+2px=x^{2}-2q^{2}+2qr-2r^{2}-x^{2}
Subtract x^{2} from both sides.
-2rp-2xq+2px=-2q^{2}+2qr-2r^{2}
Combine x^{2} and -x^{2} to get 0.
-2rp+2px=-2q^{2}+2qr-2r^{2}+2xq
Add 2xq to both sides.
\left(-2r+2x\right)p=-2q^{2}+2qr-2r^{2}+2xq
Combine all terms containing p.
\left(2x-2r\right)p=2qx+2qr-2q^{2}-2r^{2}
The equation is in standard form.
\frac{\left(2x-2r\right)p}{2x-2r}=\frac{2qx+2qr-2q^{2}-2r^{2}}{2x-2r}
Divide both sides by 2x-2r.
p=\frac{2qx+2qr-2q^{2}-2r^{2}}{2x-2r}
Dividing by 2x-2r undoes the multiplication by 2x-2r.
p=\frac{qx+qr-q^{2}-r^{2}}{x-r}
Divide -2q^{2}+2qr-2r^{2}+2xq by 2x-2r.
q^{2}-2qr+r^{2}+\left(r-p\right)^{2}+\left(x-q\right)^{2}=\left(p-x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(q-r\right)^{2}.
q^{2}-2qr+r^{2}+r^{2}-2rp+p^{2}+\left(x-q\right)^{2}=\left(p-x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(r-p\right)^{2}.
q^{2}-2qr+2r^{2}-2rp+p^{2}+\left(x-q\right)^{2}=\left(p-x\right)^{2}
Combine r^{2} and r^{2} to get 2r^{2}.
q^{2}-2qr+2r^{2}-2rp+p^{2}+x^{2}-2xq+q^{2}=\left(p-x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-q\right)^{2}.
2q^{2}-2qr+2r^{2}-2rp+p^{2}+x^{2}-2xq=\left(p-x\right)^{2}
Combine q^{2} and q^{2} to get 2q^{2}.
2q^{2}-2qr+2r^{2}-2rp+p^{2}+x^{2}-2xq=p^{2}-2px+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(p-x\right)^{2}.
2q^{2}-2qr+2r^{2}-2rp+p^{2}+x^{2}-2xq-p^{2}=-2px+x^{2}
Subtract p^{2} from both sides.
2q^{2}-2qr+2r^{2}-2rp+x^{2}-2xq=-2px+x^{2}
Combine p^{2} and -p^{2} to get 0.
2q^{2}-2qr+2r^{2}-2rp+x^{2}-2xq+2px=x^{2}
Add 2px to both sides.
-2qr+2r^{2}-2rp+x^{2}-2xq+2px=x^{2}-2q^{2}
Subtract 2q^{2} from both sides.
2r^{2}-2rp+x^{2}-2xq+2px=x^{2}-2q^{2}+2qr
Add 2qr to both sides.
-2rp+x^{2}-2xq+2px=x^{2}-2q^{2}+2qr-2r^{2}
Subtract 2r^{2} from both sides.
-2rp-2xq+2px=x^{2}-2q^{2}+2qr-2r^{2}-x^{2}
Subtract x^{2} from both sides.
-2rp-2xq+2px=-2q^{2}+2qr-2r^{2}
Combine x^{2} and -x^{2} to get 0.
-2rp+2px=-2q^{2}+2qr-2r^{2}+2xq
Add 2xq to both sides.
\left(-2r+2x\right)p=-2q^{2}+2qr-2r^{2}+2xq
Combine all terms containing p.
\left(2x-2r\right)p=2qx+2qr-2q^{2}-2r^{2}
The equation is in standard form.
\frac{\left(2x-2r\right)p}{2x-2r}=\frac{2qx+2qr-2q^{2}-2r^{2}}{2x-2r}
Divide both sides by 2x-2r.
p=\frac{2qx+2qr-2q^{2}-2r^{2}}{2x-2r}
Dividing by 2x-2r undoes the multiplication by 2x-2r.
p=\frac{qx+qr-q^{2}-r^{2}}{x-r}
Divide -2q^{2}+2qr-2r^{2}+2xq by 2x-2r.