Skip to main content
Solve for q
Tick mark Image

Similar Problems from Web Search

Share

q^{2}+q=\frac{326371}{150000}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
q^{2}+q-\frac{326371}{150000}=\frac{326371}{150000}-\frac{326371}{150000}
Subtract \frac{326371}{150000} from both sides of the equation.
q^{2}+q-\frac{326371}{150000}=0
Subtracting \frac{326371}{150000} from itself leaves 0.
q=\frac{-1±\sqrt{1^{2}-4\left(-\frac{326371}{150000}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 1 for b, and -\frac{326371}{150000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{-1±\sqrt{1-4\left(-\frac{326371}{150000}\right)}}{2}
Square 1.
q=\frac{-1±\sqrt{1+\frac{326371}{37500}}}{2}
Multiply -4 times -\frac{326371}{150000}.
q=\frac{-1±\sqrt{\frac{363871}{37500}}}{2}
Add 1 to \frac{326371}{37500}.
q=\frac{-1±\frac{\sqrt{5458065}}{750}}{2}
Take the square root of \frac{363871}{37500}.
q=\frac{\frac{\sqrt{5458065}}{750}-1}{2}
Now solve the equation q=\frac{-1±\frac{\sqrt{5458065}}{750}}{2} when ± is plus. Add -1 to \frac{\sqrt{5458065}}{750}.
q=\frac{\sqrt{5458065}}{1500}-\frac{1}{2}
Divide -1+\frac{\sqrt{5458065}}{750} by 2.
q=\frac{-\frac{\sqrt{5458065}}{750}-1}{2}
Now solve the equation q=\frac{-1±\frac{\sqrt{5458065}}{750}}{2} when ± is minus. Subtract \frac{\sqrt{5458065}}{750} from -1.
q=-\frac{\sqrt{5458065}}{1500}-\frac{1}{2}
Divide -1-\frac{\sqrt{5458065}}{750} by 2.
q=\frac{\sqrt{5458065}}{1500}-\frac{1}{2} q=-\frac{\sqrt{5458065}}{1500}-\frac{1}{2}
The equation is now solved.
q^{2}+q=\frac{326371}{150000}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
q^{2}+q+\left(\frac{1}{2}\right)^{2}=\frac{326371}{150000}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
q^{2}+q+\frac{1}{4}=\frac{326371}{150000}+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
q^{2}+q+\frac{1}{4}=\frac{363871}{150000}
Add \frac{326371}{150000} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(q+\frac{1}{2}\right)^{2}=\frac{363871}{150000}
Factor q^{2}+q+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(q+\frac{1}{2}\right)^{2}}=\sqrt{\frac{363871}{150000}}
Take the square root of both sides of the equation.
q+\frac{1}{2}=\frac{\sqrt{5458065}}{1500} q+\frac{1}{2}=-\frac{\sqrt{5458065}}{1500}
Simplify.
q=\frac{\sqrt{5458065}}{1500}-\frac{1}{2} q=-\frac{\sqrt{5458065}}{1500}-\frac{1}{2}
Subtract \frac{1}{2} from both sides of the equation.