Factor
\left(p-3\right)\left(p-1\right)
Evaluate
\left(p-3\right)\left(p-1\right)
Share
Copied to clipboard
a+b=-4 ab=1\times 3=3
Factor the expression by grouping. First, the expression needs to be rewritten as p^{2}+ap+bp+3. To find a and b, set up a system to be solved.
a=-3 b=-1
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(p^{2}-3p\right)+\left(-p+3\right)
Rewrite p^{2}-4p+3 as \left(p^{2}-3p\right)+\left(-p+3\right).
p\left(p-3\right)-\left(p-3\right)
Factor out p in the first and -1 in the second group.
\left(p-3\right)\left(p-1\right)
Factor out common term p-3 by using distributive property.
p^{2}-4p+3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
p=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-\left(-4\right)±\sqrt{16-4\times 3}}{2}
Square -4.
p=\frac{-\left(-4\right)±\sqrt{16-12}}{2}
Multiply -4 times 3.
p=\frac{-\left(-4\right)±\sqrt{4}}{2}
Add 16 to -12.
p=\frac{-\left(-4\right)±2}{2}
Take the square root of 4.
p=\frac{4±2}{2}
The opposite of -4 is 4.
p=\frac{6}{2}
Now solve the equation p=\frac{4±2}{2} when ± is plus. Add 4 to 2.
p=3
Divide 6 by 2.
p=\frac{2}{2}
Now solve the equation p=\frac{4±2}{2} when ± is minus. Subtract 2 from 4.
p=1
Divide 2 by 2.
p^{2}-4p+3=\left(p-3\right)\left(p-1\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3 for x_{1} and 1 for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}