Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

p^{2}+6p-19=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
p=\frac{-6±\sqrt{6^{2}-4\left(-19\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-6±\sqrt{36-4\left(-19\right)}}{2}
Square 6.
p=\frac{-6±\sqrt{36+76}}{2}
Multiply -4 times -19.
p=\frac{-6±\sqrt{112}}{2}
Add 36 to 76.
p=\frac{-6±4\sqrt{7}}{2}
Take the square root of 112.
p=\frac{4\sqrt{7}-6}{2}
Now solve the equation p=\frac{-6±4\sqrt{7}}{2} when ± is plus. Add -6 to 4\sqrt{7}.
p=2\sqrt{7}-3
Divide -6+4\sqrt{7} by 2.
p=\frac{-4\sqrt{7}-6}{2}
Now solve the equation p=\frac{-6±4\sqrt{7}}{2} when ± is minus. Subtract 4\sqrt{7} from -6.
p=-2\sqrt{7}-3
Divide -6-4\sqrt{7} by 2.
p^{2}+6p-19=\left(p-\left(2\sqrt{7}-3\right)\right)\left(p-\left(-2\sqrt{7}-3\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -3+2\sqrt{7} for x_{1} and -3-2\sqrt{7} for x_{2}.