Solve for b
b=-p+1+\frac{53}{x}
x\neq 0
Solve for p
p=-b+1+\frac{53}{x}
x\neq 0
Graph
Share
Copied to clipboard
p+1-p+\left(p+1-b-2p\right)x=-52
Subtract 1 from 2 to get 1.
1+\left(p+1-b-2p\right)x=-52
Combine p and -p to get 0.
1+\left(-p+1-b\right)x=-52
Combine p and -2p to get -p.
1-px+x-bx=-52
Use the distributive property to multiply -p+1-b by x.
-px+x-bx=-52-1
Subtract 1 from both sides.
-px+x-bx=-53
Subtract 1 from -52 to get -53.
x-bx=-53+px
Add px to both sides.
-bx=-53+px-x
Subtract x from both sides.
\left(-x\right)b=px-x-53
The equation is in standard form.
\frac{\left(-x\right)b}{-x}=\frac{px-x-53}{-x}
Divide both sides by -x.
b=\frac{px-x-53}{-x}
Dividing by -x undoes the multiplication by -x.
b=-p+1+\frac{53}{x}
Divide -53+px-x by -x.
p+1-p+\left(p+1-b-2p\right)x=-52
Subtract 1 from 2 to get 1.
1+\left(p+1-b-2p\right)x=-52
Combine p and -p to get 0.
1+\left(-p+1-b\right)x=-52
Combine p and -2p to get -p.
1-px+x-bx=-52
Use the distributive property to multiply -p+1-b by x.
-px+x-bx=-52-1
Subtract 1 from both sides.
-px+x-bx=-53
Subtract 1 from -52 to get -53.
-px-bx=-53-x
Subtract x from both sides.
-px=-53-x+bx
Add bx to both sides.
\left(-x\right)p=bx-x-53
The equation is in standard form.
\frac{\left(-x\right)p}{-x}=\frac{bx-x-53}{-x}
Divide both sides by -x.
p=\frac{bx-x-53}{-x}
Dividing by -x undoes the multiplication by -x.
p=-b+1+\frac{53}{x}
Divide -53-x+bx by -x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}