Solve for p
p=1
p=3
Share
Copied to clipboard
p^{2}+4p+4=8\left(p+2\right)-15
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(p+2\right)^{2}.
p^{2}+4p+4=8p+16-15
Use the distributive property to multiply 8 by p+2.
p^{2}+4p+4=8p+1
Subtract 15 from 16 to get 1.
p^{2}+4p+4-8p=1
Subtract 8p from both sides.
p^{2}-4p+4=1
Combine 4p and -8p to get -4p.
p^{2}-4p+4-1=0
Subtract 1 from both sides.
p^{2}-4p+3=0
Subtract 1 from 4 to get 3.
a+b=-4 ab=3
To solve the equation, factor p^{2}-4p+3 using formula p^{2}+\left(a+b\right)p+ab=\left(p+a\right)\left(p+b\right). To find a and b, set up a system to be solved.
a=-3 b=-1
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(p-3\right)\left(p-1\right)
Rewrite factored expression \left(p+a\right)\left(p+b\right) using the obtained values.
p=3 p=1
To find equation solutions, solve p-3=0 and p-1=0.
p^{2}+4p+4=8\left(p+2\right)-15
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(p+2\right)^{2}.
p^{2}+4p+4=8p+16-15
Use the distributive property to multiply 8 by p+2.
p^{2}+4p+4=8p+1
Subtract 15 from 16 to get 1.
p^{2}+4p+4-8p=1
Subtract 8p from both sides.
p^{2}-4p+4=1
Combine 4p and -8p to get -4p.
p^{2}-4p+4-1=0
Subtract 1 from both sides.
p^{2}-4p+3=0
Subtract 1 from 4 to get 3.
a+b=-4 ab=1\times 3=3
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as p^{2}+ap+bp+3. To find a and b, set up a system to be solved.
a=-3 b=-1
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(p^{2}-3p\right)+\left(-p+3\right)
Rewrite p^{2}-4p+3 as \left(p^{2}-3p\right)+\left(-p+3\right).
p\left(p-3\right)-\left(p-3\right)
Factor out p in the first and -1 in the second group.
\left(p-3\right)\left(p-1\right)
Factor out common term p-3 by using distributive property.
p=3 p=1
To find equation solutions, solve p-3=0 and p-1=0.
p^{2}+4p+4=8\left(p+2\right)-15
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(p+2\right)^{2}.
p^{2}+4p+4=8p+16-15
Use the distributive property to multiply 8 by p+2.
p^{2}+4p+4=8p+1
Subtract 15 from 16 to get 1.
p^{2}+4p+4-8p=1
Subtract 8p from both sides.
p^{2}-4p+4=1
Combine 4p and -8p to get -4p.
p^{2}-4p+4-1=0
Subtract 1 from both sides.
p^{2}-4p+3=0
Subtract 1 from 4 to get 3.
p=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\left(-4\right)±\sqrt{16-4\times 3}}{2}
Square -4.
p=\frac{-\left(-4\right)±\sqrt{16-12}}{2}
Multiply -4 times 3.
p=\frac{-\left(-4\right)±\sqrt{4}}{2}
Add 16 to -12.
p=\frac{-\left(-4\right)±2}{2}
Take the square root of 4.
p=\frac{4±2}{2}
The opposite of -4 is 4.
p=\frac{6}{2}
Now solve the equation p=\frac{4±2}{2} when ± is plus. Add 4 to 2.
p=3
Divide 6 by 2.
p=\frac{2}{2}
Now solve the equation p=\frac{4±2}{2} when ± is minus. Subtract 2 from 4.
p=1
Divide 2 by 2.
p=3 p=1
The equation is now solved.
p^{2}+4p+4=8\left(p+2\right)-15
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(p+2\right)^{2}.
p^{2}+4p+4=8p+16-15
Use the distributive property to multiply 8 by p+2.
p^{2}+4p+4=8p+1
Subtract 15 from 16 to get 1.
p^{2}+4p+4-8p=1
Subtract 8p from both sides.
p^{2}-4p+4=1
Combine 4p and -8p to get -4p.
\left(p-2\right)^{2}=1
Factor p^{2}-4p+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-2\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
p-2=1 p-2=-1
Simplify.
p=3 p=1
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}