Solve for Y
Y=\frac{2}{7\left(n+4\right)}
n\neq -4
Solve for n
n=-4+\frac{2}{7Y}
Y\neq 0
Share
Copied to clipboard
nY-1+4Y=-\frac{5}{7}
Reduce the fraction \frac{-40}{56} to lowest terms by extracting and canceling out 8.
nY+4Y=-\frac{5}{7}+1
Add 1 to both sides.
nY+4Y=\frac{2}{7}
Add -\frac{5}{7} and 1 to get \frac{2}{7}.
\left(n+4\right)Y=\frac{2}{7}
Combine all terms containing Y.
\frac{\left(n+4\right)Y}{n+4}=\frac{\frac{2}{7}}{n+4}
Divide both sides by n+4.
Y=\frac{\frac{2}{7}}{n+4}
Dividing by n+4 undoes the multiplication by n+4.
Y=\frac{2}{7\left(n+4\right)}
Divide \frac{2}{7} by n+4.
nY-1+4Y=-\frac{5}{7}
Reduce the fraction \frac{-40}{56} to lowest terms by extracting and canceling out 8.
nY+4Y=-\frac{5}{7}+1
Add 1 to both sides.
nY+4Y=\frac{2}{7}
Add -\frac{5}{7} and 1 to get \frac{2}{7}.
nY=\frac{2}{7}-4Y
Subtract 4Y from both sides.
Yn=\frac{2}{7}-4Y
The equation is in standard form.
\frac{Yn}{Y}=\frac{\frac{2}{7}-4Y}{Y}
Divide both sides by Y.
n=\frac{\frac{2}{7}-4Y}{Y}
Dividing by Y undoes the multiplication by Y.
n=-4+\frac{2}{7Y}
Divide \frac{2}{7}-4Y by Y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}