Solve for m (complex solution)
\left\{\begin{matrix}m=-\frac{nx^{2}-3x^{2}+3x-1}{x-1}\text{, }&x\neq 1\\m\in \mathrm{C}\text{, }&x=1\text{ and }n=1\end{matrix}\right.
Solve for n (complex solution)
\left\{\begin{matrix}n=-\frac{-3x^{2}+mx+3x-m-1}{x^{2}}\text{, }&x\neq 0\\n\in \mathrm{C}\text{, }&m=-1\text{ and }x=0\end{matrix}\right.
Solve for m
\left\{\begin{matrix}m=-\frac{nx^{2}-3x^{2}+3x-1}{x-1}\text{, }&x\neq 1\\m\in \mathrm{R}\text{, }&x=1\text{ and }n=1\end{matrix}\right.
Solve for n
\left\{\begin{matrix}n=-\frac{-3x^{2}+mx+3x-m-1}{x^{2}}\text{, }&x\neq 0\\n\in \mathrm{R}\text{, }&m=-1\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
nx^{2}-3x^{2}+\left(m+3\right)x-\left(m+1\right)=0
Use the distributive property to multiply n-3 by x^{2}.
nx^{2}-3x^{2}+mx+3x-\left(m+1\right)=0
Use the distributive property to multiply m+3 by x.
nx^{2}-3x^{2}+mx+3x-m-1=0
To find the opposite of m+1, find the opposite of each term.
-3x^{2}+mx+3x-m-1=-nx^{2}
Subtract nx^{2} from both sides. Anything subtracted from zero gives its negation.
mx+3x-m-1=-nx^{2}+3x^{2}
Add 3x^{2} to both sides.
mx-m-1=-nx^{2}+3x^{2}-3x
Subtract 3x from both sides.
mx-m=-nx^{2}+3x^{2}-3x+1
Add 1 to both sides.
\left(x-1\right)m=-nx^{2}+3x^{2}-3x+1
Combine all terms containing m.
\left(x-1\right)m=1-3x+3x^{2}-nx^{2}
The equation is in standard form.
\frac{\left(x-1\right)m}{x-1}=\frac{1-3x+3x^{2}-nx^{2}}{x-1}
Divide both sides by x-1.
m=\frac{1-3x+3x^{2}-nx^{2}}{x-1}
Dividing by x-1 undoes the multiplication by x-1.
nx^{2}-3x^{2}+\left(m+3\right)x-\left(m+1\right)=0
Use the distributive property to multiply n-3 by x^{2}.
nx^{2}-3x^{2}+mx+3x-\left(m+1\right)=0
Use the distributive property to multiply m+3 by x.
nx^{2}-3x^{2}+mx+3x-m-1=0
To find the opposite of m+1, find the opposite of each term.
nx^{2}+mx+3x-m-1=3x^{2}
Add 3x^{2} to both sides. Anything plus zero gives itself.
nx^{2}+3x-m-1=3x^{2}-mx
Subtract mx from both sides.
nx^{2}-m-1=3x^{2}-mx-3x
Subtract 3x from both sides.
nx^{2}-1=3x^{2}-mx-3x+m
Add m to both sides.
nx^{2}=3x^{2}-mx-3x+m+1
Add 1 to both sides.
x^{2}n=3x^{2}-mx-3x+m+1
The equation is in standard form.
\frac{x^{2}n}{x^{2}}=\frac{3x^{2}-mx-3x+m+1}{x^{2}}
Divide both sides by x^{2}.
n=\frac{3x^{2}-mx-3x+m+1}{x^{2}}
Dividing by x^{2} undoes the multiplication by x^{2}.
nx^{2}-3x^{2}+\left(m+3\right)x-\left(m+1\right)=0
Use the distributive property to multiply n-3 by x^{2}.
nx^{2}-3x^{2}+mx+3x-\left(m+1\right)=0
Use the distributive property to multiply m+3 by x.
nx^{2}-3x^{2}+mx+3x-m-1=0
To find the opposite of m+1, find the opposite of each term.
-3x^{2}+mx+3x-m-1=-nx^{2}
Subtract nx^{2} from both sides. Anything subtracted from zero gives its negation.
mx+3x-m-1=-nx^{2}+3x^{2}
Add 3x^{2} to both sides.
mx-m-1=-nx^{2}+3x^{2}-3x
Subtract 3x from both sides.
mx-m=-nx^{2}+3x^{2}-3x+1
Add 1 to both sides.
\left(x-1\right)m=-nx^{2}+3x^{2}-3x+1
Combine all terms containing m.
\left(x-1\right)m=1-3x+3x^{2}-nx^{2}
The equation is in standard form.
\frac{\left(x-1\right)m}{x-1}=\frac{1-3x+3x^{2}-nx^{2}}{x-1}
Divide both sides by x-1.
m=\frac{1-3x+3x^{2}-nx^{2}}{x-1}
Dividing by x-1 undoes the multiplication by x-1.
nx^{2}-3x^{2}+\left(m+3\right)x-\left(m+1\right)=0
Use the distributive property to multiply n-3 by x^{2}.
nx^{2}-3x^{2}+mx+3x-\left(m+1\right)=0
Use the distributive property to multiply m+3 by x.
nx^{2}-3x^{2}+mx+3x-m-1=0
To find the opposite of m+1, find the opposite of each term.
nx^{2}+mx+3x-m-1=3x^{2}
Add 3x^{2} to both sides. Anything plus zero gives itself.
nx^{2}+3x-m-1=3x^{2}-mx
Subtract mx from both sides.
nx^{2}-m-1=3x^{2}-mx-3x
Subtract 3x from both sides.
nx^{2}-1=3x^{2}-mx-3x+m
Add m to both sides.
nx^{2}=3x^{2}-mx-3x+m+1
Add 1 to both sides.
x^{2}n=3x^{2}-mx-3x+m+1
The equation is in standard form.
\frac{x^{2}n}{x^{2}}=\frac{3x^{2}-mx-3x+m+1}{x^{2}}
Divide both sides by x^{2}.
n=\frac{3x^{2}-mx-3x+m+1}{x^{2}}
Dividing by x^{2} undoes the multiplication by x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}