Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

n^{2}-6n+9+n^{2}=\left(n+6\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(n-3\right)^{2}.
2n^{2}-6n+9=\left(n+6\right)^{2}
Combine n^{2} and n^{2} to get 2n^{2}.
2n^{2}-6n+9=n^{2}+12n+36
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(n+6\right)^{2}.
2n^{2}-6n+9-n^{2}=12n+36
Subtract n^{2} from both sides.
n^{2}-6n+9=12n+36
Combine 2n^{2} and -n^{2} to get n^{2}.
n^{2}-6n+9-12n=36
Subtract 12n from both sides.
n^{2}-18n+9=36
Combine -6n and -12n to get -18n.
n^{2}-18n+9-36=0
Subtract 36 from both sides.
n^{2}-18n-27=0
Subtract 36 from 9 to get -27.
n=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\left(-27\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -18 for b, and -27 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-18\right)±\sqrt{324-4\left(-27\right)}}{2}
Square -18.
n=\frac{-\left(-18\right)±\sqrt{324+108}}{2}
Multiply -4 times -27.
n=\frac{-\left(-18\right)±\sqrt{432}}{2}
Add 324 to 108.
n=\frac{-\left(-18\right)±12\sqrt{3}}{2}
Take the square root of 432.
n=\frac{18±12\sqrt{3}}{2}
The opposite of -18 is 18.
n=\frac{12\sqrt{3}+18}{2}
Now solve the equation n=\frac{18±12\sqrt{3}}{2} when ± is plus. Add 18 to 12\sqrt{3}.
n=6\sqrt{3}+9
Divide 18+12\sqrt{3} by 2.
n=\frac{18-12\sqrt{3}}{2}
Now solve the equation n=\frac{18±12\sqrt{3}}{2} when ± is minus. Subtract 12\sqrt{3} from 18.
n=9-6\sqrt{3}
Divide 18-12\sqrt{3} by 2.
n=6\sqrt{3}+9 n=9-6\sqrt{3}
The equation is now solved.
n^{2}-6n+9+n^{2}=\left(n+6\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(n-3\right)^{2}.
2n^{2}-6n+9=\left(n+6\right)^{2}
Combine n^{2} and n^{2} to get 2n^{2}.
2n^{2}-6n+9=n^{2}+12n+36
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(n+6\right)^{2}.
2n^{2}-6n+9-n^{2}=12n+36
Subtract n^{2} from both sides.
n^{2}-6n+9=12n+36
Combine 2n^{2} and -n^{2} to get n^{2}.
n^{2}-6n+9-12n=36
Subtract 12n from both sides.
n^{2}-18n+9=36
Combine -6n and -12n to get -18n.
n^{2}-18n=36-9
Subtract 9 from both sides.
n^{2}-18n=27
Subtract 9 from 36 to get 27.
n^{2}-18n+\left(-9\right)^{2}=27+\left(-9\right)^{2}
Divide -18, the coefficient of the x term, by 2 to get -9. Then add the square of -9 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-18n+81=27+81
Square -9.
n^{2}-18n+81=108
Add 27 to 81.
\left(n-9\right)^{2}=108
Factor n^{2}-18n+81. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-9\right)^{2}}=\sqrt{108}
Take the square root of both sides of the equation.
n-9=6\sqrt{3} n-9=-6\sqrt{3}
Simplify.
n=6\sqrt{3}+9 n=9-6\sqrt{3}
Add 9 to both sides of the equation.