Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

n^{2}-2n+1=2n
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(n-1\right)^{2}.
n^{2}-2n+1-2n=0
Subtract 2n from both sides.
n^{2}-4n+1=0
Combine -2n and -2n to get -4n.
n=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-4\right)±\sqrt{16-4}}{2}
Square -4.
n=\frac{-\left(-4\right)±\sqrt{12}}{2}
Add 16 to -4.
n=\frac{-\left(-4\right)±2\sqrt{3}}{2}
Take the square root of 12.
n=\frac{4±2\sqrt{3}}{2}
The opposite of -4 is 4.
n=\frac{2\sqrt{3}+4}{2}
Now solve the equation n=\frac{4±2\sqrt{3}}{2} when ± is plus. Add 4 to 2\sqrt{3}.
n=\sqrt{3}+2
Divide 4+2\sqrt{3} by 2.
n=\frac{4-2\sqrt{3}}{2}
Now solve the equation n=\frac{4±2\sqrt{3}}{2} when ± is minus. Subtract 2\sqrt{3} from 4.
n=2-\sqrt{3}
Divide 4-2\sqrt{3} by 2.
n=\sqrt{3}+2 n=2-\sqrt{3}
The equation is now solved.
n^{2}-2n+1=2n
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(n-1\right)^{2}.
n^{2}-2n+1-2n=0
Subtract 2n from both sides.
n^{2}-4n+1=0
Combine -2n and -2n to get -4n.
n^{2}-4n=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
n^{2}-4n+\left(-2\right)^{2}=-1+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-4n+4=-1+4
Square -2.
n^{2}-4n+4=3
Add -1 to 4.
\left(n-2\right)^{2}=3
Factor n^{2}-4n+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-2\right)^{2}}=\sqrt{3}
Take the square root of both sides of the equation.
n-2=\sqrt{3} n-2=-\sqrt{3}
Simplify.
n=\sqrt{3}+2 n=2-\sqrt{3}
Add 2 to both sides of the equation.