Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

\left(n-\frac{1}{3}\right)^{2}-\frac{24}{25}=n^{2}-4
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
n^{2}-\frac{2}{3}n+\frac{1}{9}-\frac{24}{25}=n^{2}-4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(n-\frac{1}{3}\right)^{2}.
n^{2}-\frac{2}{3}n-\frac{191}{225}=n^{2}-4
Subtract \frac{24}{25} from \frac{1}{9} to get -\frac{191}{225}.
n^{2}-\frac{2}{3}n-\frac{191}{225}-n^{2}=-4
Subtract n^{2} from both sides.
-\frac{2}{3}n-\frac{191}{225}=-4
Combine n^{2} and -n^{2} to get 0.
-\frac{2}{3}n=-4+\frac{191}{225}
Add \frac{191}{225} to both sides.
-\frac{2}{3}n=-\frac{709}{225}
Add -4 and \frac{191}{225} to get -\frac{709}{225}.
n=-\frac{709}{225}\left(-\frac{3}{2}\right)
Multiply both sides by -\frac{3}{2}, the reciprocal of -\frac{2}{3}.
n=\frac{709}{150}
Multiply -\frac{709}{225} and -\frac{3}{2} to get \frac{709}{150}.