Solve for n
n = \frac{709}{150} = 4\frac{109}{150} \approx 4.726666667
Share
Copied to clipboard
\left(n-\frac{1}{3}\right)^{2}-\frac{24}{25}=n^{2}-4
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
n^{2}-\frac{2}{3}n+\frac{1}{9}-\frac{24}{25}=n^{2}-4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(n-\frac{1}{3}\right)^{2}.
n^{2}-\frac{2}{3}n-\frac{191}{225}=n^{2}-4
Subtract \frac{24}{25} from \frac{1}{9} to get -\frac{191}{225}.
n^{2}-\frac{2}{3}n-\frac{191}{225}-n^{2}=-4
Subtract n^{2} from both sides.
-\frac{2}{3}n-\frac{191}{225}=-4
Combine n^{2} and -n^{2} to get 0.
-\frac{2}{3}n=-4+\frac{191}{225}
Add \frac{191}{225} to both sides.
-\frac{2}{3}n=-\frac{709}{225}
Add -4 and \frac{191}{225} to get -\frac{709}{225}.
n=-\frac{709}{225}\left(-\frac{3}{2}\right)
Multiply both sides by -\frac{3}{2}, the reciprocal of -\frac{2}{3}.
n=\frac{709}{150}
Multiply -\frac{709}{225} and -\frac{3}{2} to get \frac{709}{150}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}