Solve for n (complex solution)
\left\{\begin{matrix}n=-\frac{x+y}{2-y-3x}\text{, }&y\neq 2-3x\\n\in \mathrm{C}\text{, }&y=-1\text{ and }x=1\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{ny-y-2n}{3n-1}\text{, }&n\neq \frac{1}{3}\\x\in \mathrm{C}\text{, }&y=-1\text{ and }n=\frac{1}{3}\end{matrix}\right.
Solve for n
\left\{\begin{matrix}n=-\frac{x+y}{2-y-3x}\text{, }&y\neq 2-3x\\n\in \mathrm{R}\text{, }&y=-1\text{ and }x=1\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{ny-y-2n}{3n-1}\text{, }&n\neq \frac{1}{3}\\x\in \mathrm{R}\text{, }&y=-1\text{ and }n=\frac{1}{3}\end{matrix}\right.
Graph
Share
Copied to clipboard
n=\frac{1}{2}yn-\frac{1}{2}y+xn+\frac{1}{2}x\left(n-1\right)
Use the distributive property to multiply \frac{1}{2}y by n-1.
n=\frac{1}{2}yn-\frac{1}{2}y+xn+\frac{1}{2}xn-\frac{1}{2}x
Use the distributive property to multiply \frac{1}{2}x by n-1.
n=\frac{1}{2}yn-\frac{1}{2}y+\frac{3}{2}xn-\frac{1}{2}x
Combine xn and \frac{1}{2}xn to get \frac{3}{2}xn.
n-\frac{1}{2}yn=-\frac{1}{2}y+\frac{3}{2}xn-\frac{1}{2}x
Subtract \frac{1}{2}yn from both sides.
n-\frac{1}{2}yn-\frac{3}{2}xn=-\frac{1}{2}y-\frac{1}{2}x
Subtract \frac{3}{2}xn from both sides.
\left(1-\frac{1}{2}y-\frac{3}{2}x\right)n=-\frac{1}{2}y-\frac{1}{2}x
Combine all terms containing n.
\left(-\frac{y}{2}-\frac{3x}{2}+1\right)n=\frac{-x-y}{2}
The equation is in standard form.
\frac{\left(-\frac{y}{2}-\frac{3x}{2}+1\right)n}{-\frac{y}{2}-\frac{3x}{2}+1}=\frac{-x-y}{2\left(-\frac{y}{2}-\frac{3x}{2}+1\right)}
Divide both sides by -\frac{3}{2}x-\frac{1}{2}y+1.
n=\frac{-x-y}{2\left(-\frac{y}{2}-\frac{3x}{2}+1\right)}
Dividing by -\frac{3}{2}x-\frac{1}{2}y+1 undoes the multiplication by -\frac{3}{2}x-\frac{1}{2}y+1.
n=-\frac{x+y}{2-y-3x}
Divide \frac{-y-x}{2} by -\frac{3}{2}x-\frac{1}{2}y+1.
n=\frac{1}{2}yn-\frac{1}{2}y+xn+\frac{1}{2}x\left(n-1\right)
Use the distributive property to multiply \frac{1}{2}y by n-1.
n=\frac{1}{2}yn-\frac{1}{2}y+xn+\frac{1}{2}xn-\frac{1}{2}x
Use the distributive property to multiply \frac{1}{2}x by n-1.
n=\frac{1}{2}yn-\frac{1}{2}y+\frac{3}{2}xn-\frac{1}{2}x
Combine xn and \frac{1}{2}xn to get \frac{3}{2}xn.
\frac{1}{2}yn-\frac{1}{2}y+\frac{3}{2}xn-\frac{1}{2}x=n
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{2}y+\frac{3}{2}xn-\frac{1}{2}x=n-\frac{1}{2}yn
Subtract \frac{1}{2}yn from both sides.
\frac{3}{2}xn-\frac{1}{2}x=n-\frac{1}{2}yn+\frac{1}{2}y
Add \frac{1}{2}y to both sides.
\left(\frac{3}{2}n-\frac{1}{2}\right)x=n-\frac{1}{2}yn+\frac{1}{2}y
Combine all terms containing x.
\frac{3n-1}{2}x=-\frac{ny}{2}+\frac{y}{2}+n
The equation is in standard form.
\frac{2\times \frac{3n-1}{2}x}{3n-1}=\frac{2\left(-\frac{ny}{2}+\frac{y}{2}+n\right)}{3n-1}
Divide both sides by \frac{3}{2}n-\frac{1}{2}.
x=\frac{2\left(-\frac{ny}{2}+\frac{y}{2}+n\right)}{3n-1}
Dividing by \frac{3}{2}n-\frac{1}{2} undoes the multiplication by \frac{3}{2}n-\frac{1}{2}.
x=\frac{2n+y-ny}{3n-1}
Divide n-\frac{yn}{2}+\frac{y}{2} by \frac{3}{2}n-\frac{1}{2}.
n=\frac{1}{2}yn-\frac{1}{2}y+xn+\frac{1}{2}x\left(n-1\right)
Use the distributive property to multiply \frac{1}{2}y by n-1.
n=\frac{1}{2}yn-\frac{1}{2}y+xn+\frac{1}{2}xn-\frac{1}{2}x
Use the distributive property to multiply \frac{1}{2}x by n-1.
n=\frac{1}{2}yn-\frac{1}{2}y+\frac{3}{2}xn-\frac{1}{2}x
Combine xn and \frac{1}{2}xn to get \frac{3}{2}xn.
n-\frac{1}{2}yn=-\frac{1}{2}y+\frac{3}{2}xn-\frac{1}{2}x
Subtract \frac{1}{2}yn from both sides.
n-\frac{1}{2}yn-\frac{3}{2}xn=-\frac{1}{2}y-\frac{1}{2}x
Subtract \frac{3}{2}xn from both sides.
\left(1-\frac{1}{2}y-\frac{3}{2}x\right)n=-\frac{1}{2}y-\frac{1}{2}x
Combine all terms containing n.
\left(-\frac{y}{2}-\frac{3x}{2}+1\right)n=\frac{-x-y}{2}
The equation is in standard form.
\frac{\left(-\frac{y}{2}-\frac{3x}{2}+1\right)n}{-\frac{y}{2}-\frac{3x}{2}+1}=\frac{-x-y}{2\left(-\frac{y}{2}-\frac{3x}{2}+1\right)}
Divide both sides by -\frac{3}{2}x-\frac{1}{2}y+1.
n=\frac{-x-y}{2\left(-\frac{y}{2}-\frac{3x}{2}+1\right)}
Dividing by -\frac{3}{2}x-\frac{1}{2}y+1 undoes the multiplication by -\frac{3}{2}x-\frac{1}{2}y+1.
n=-\frac{x+y}{2-y-3x}
Divide \frac{-y-x}{2} by -\frac{3}{2}x-\frac{1}{2}y+1.
n=\frac{1}{2}yn-\frac{1}{2}y+xn+\frac{1}{2}x\left(n-1\right)
Use the distributive property to multiply \frac{1}{2}y by n-1.
n=\frac{1}{2}yn-\frac{1}{2}y+xn+\frac{1}{2}xn-\frac{1}{2}x
Use the distributive property to multiply \frac{1}{2}x by n-1.
n=\frac{1}{2}yn-\frac{1}{2}y+\frac{3}{2}xn-\frac{1}{2}x
Combine xn and \frac{1}{2}xn to get \frac{3}{2}xn.
\frac{1}{2}yn-\frac{1}{2}y+\frac{3}{2}xn-\frac{1}{2}x=n
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{2}y+\frac{3}{2}xn-\frac{1}{2}x=n-\frac{1}{2}yn
Subtract \frac{1}{2}yn from both sides.
\frac{3}{2}xn-\frac{1}{2}x=n-\frac{1}{2}yn+\frac{1}{2}y
Add \frac{1}{2}y to both sides.
\left(\frac{3}{2}n-\frac{1}{2}\right)x=n-\frac{1}{2}yn+\frac{1}{2}y
Combine all terms containing x.
\frac{3n-1}{2}x=-\frac{ny}{2}+\frac{y}{2}+n
The equation is in standard form.
\frac{2\times \frac{3n-1}{2}x}{3n-1}=\frac{2\left(-\frac{ny}{2}+\frac{y}{2}+n\right)}{3n-1}
Divide both sides by \frac{3}{2}n-\frac{1}{2}.
x=\frac{2\left(-\frac{ny}{2}+\frac{y}{2}+n\right)}{3n-1}
Dividing by \frac{3}{2}n-\frac{1}{2} undoes the multiplication by \frac{3}{2}n-\frac{1}{2}.
x=\frac{2n+y-ny}{3n-1}
Divide n-\frac{yn}{2}+\frac{y}{2} by \frac{3}{2}n-\frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}