Evaluate
n^{29}
Differentiate w.r.t. n
29n^{28}
Share
Copied to clipboard
\left(n^{3}\right)^{3}\left(n^{4}\right)^{5}
Use the rules of exponents to simplify the expression.
n^{3\times 3}n^{4\times 5}
To raise a power to another power, multiply the exponents.
n^{9}n^{4\times 5}
Multiply 3 times 3.
n^{9}n^{20}
Multiply 4 times 5.
n^{9+20}
To multiply powers of the same base, add their exponents.
n^{29}
Add the exponents 9 and 20.
\frac{\mathrm{d}}{\mathrm{d}n}(n^{9}\left(n^{4}\right)^{5})
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{\mathrm{d}}{\mathrm{d}n}(n^{9}n^{20})
To raise a power to another power, multiply the exponents. Multiply 4 and 5 to get 20.
\frac{\mathrm{d}}{\mathrm{d}n}(n^{29})
To multiply powers of the same base, add their exponents. Add 9 and 20 to get 29.
29n^{29-1}
The derivative of ax^{n} is nax^{n-1}.
29n^{28}
Subtract 1 from 29.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}