Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. n
Tick mark Image

Similar Problems from Web Search

Share

\left(n^{0}\right)^{2}\times \left(2n^{4}\right)^{3}
Use the rules of exponents to simplify the expression.
1^{2}\left(n^{0}\right)^{2}\times 2^{3}\left(n^{4}\right)^{3}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
1^{2}\times 2^{3}\left(n^{0}\right)^{2}\left(n^{4}\right)^{3}
Use the Commutative Property of Multiplication.
1^{2}\times 2^{3}n^{0}n^{4\times 3}
To raise a power to another power, multiply the exponents.
1^{2}\times 2^{3}n^{0}n^{12}
Multiply 4 times 3.
1^{2}\times 2^{3}n^{12}
To multiply powers of the same base, add their exponents.
8n^{12}
Raise 2 to the power 3.
\frac{\mathrm{d}}{\mathrm{d}n}(n^{0}\times \left(2n^{4}\right)^{3})
To raise a power to another power, multiply the exponents. Multiply 0 and 2 to get 0.
\frac{\mathrm{d}}{\mathrm{d}n}(1\times \left(2n^{4}\right)^{3})
Calculate n to the power of 0 and get 1.
\frac{\mathrm{d}}{\mathrm{d}n}(1\times 2^{3}\left(n^{4}\right)^{3})
Expand \left(2n^{4}\right)^{3}.
\frac{\mathrm{d}}{\mathrm{d}n}(1\times 2^{3}n^{12})
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
\frac{\mathrm{d}}{\mathrm{d}n}(1\times 8n^{12})
Calculate 2 to the power of 3 and get 8.
\frac{\mathrm{d}}{\mathrm{d}n}(8n^{12})
Multiply 1 and 8 to get 8.
12\times 8n^{12-1}
The derivative of ax^{n} is nax^{n-1}.
96n^{12-1}
Multiply 12 times 8.
96n^{11}
Subtract 1 from 12.