Solve for n
n = \frac{\sqrt{137} - 3}{8} \approx 1.088087489
n=\frac{-\sqrt{137}-3}{8}\approx -1.838087489
Share
Copied to clipboard
n+3=2^{2}n^{2}+\left(-1+3\right)\times 2n-5^{1}
Expand \left(2n\right)^{2}.
n+3=4n^{2}+\left(-1+3\right)\times 2n-5^{1}
Calculate 2 to the power of 2 and get 4.
n+3=4n^{2}+2\times 2n-5^{1}
Add -1 and 3 to get 2.
n+3=4n^{2}+4n-5^{1}
Multiply 2 and 2 to get 4.
n+3=4n^{2}+4n-5
Calculate 5 to the power of 1 and get 5.
n+3-4n^{2}=4n-5
Subtract 4n^{2} from both sides.
n+3-4n^{2}-4n=-5
Subtract 4n from both sides.
-3n+3-4n^{2}=-5
Combine n and -4n to get -3n.
-3n+3-4n^{2}+5=0
Add 5 to both sides.
-3n+8-4n^{2}=0
Add 3 and 5 to get 8.
-4n^{2}-3n+8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-4\right)\times 8}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, -3 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-3\right)±\sqrt{9-4\left(-4\right)\times 8}}{2\left(-4\right)}
Square -3.
n=\frac{-\left(-3\right)±\sqrt{9+16\times 8}}{2\left(-4\right)}
Multiply -4 times -4.
n=\frac{-\left(-3\right)±\sqrt{9+128}}{2\left(-4\right)}
Multiply 16 times 8.
n=\frac{-\left(-3\right)±\sqrt{137}}{2\left(-4\right)}
Add 9 to 128.
n=\frac{3±\sqrt{137}}{2\left(-4\right)}
The opposite of -3 is 3.
n=\frac{3±\sqrt{137}}{-8}
Multiply 2 times -4.
n=\frac{\sqrt{137}+3}{-8}
Now solve the equation n=\frac{3±\sqrt{137}}{-8} when ± is plus. Add 3 to \sqrt{137}.
n=\frac{-\sqrt{137}-3}{8}
Divide 3+\sqrt{137} by -8.
n=\frac{3-\sqrt{137}}{-8}
Now solve the equation n=\frac{3±\sqrt{137}}{-8} when ± is minus. Subtract \sqrt{137} from 3.
n=\frac{\sqrt{137}-3}{8}
Divide 3-\sqrt{137} by -8.
n=\frac{-\sqrt{137}-3}{8} n=\frac{\sqrt{137}-3}{8}
The equation is now solved.
n+3=2^{2}n^{2}+\left(-1+3\right)\times 2n-5^{1}
Expand \left(2n\right)^{2}.
n+3=4n^{2}+\left(-1+3\right)\times 2n-5^{1}
Calculate 2 to the power of 2 and get 4.
n+3=4n^{2}+2\times 2n-5^{1}
Add -1 and 3 to get 2.
n+3=4n^{2}+4n-5^{1}
Multiply 2 and 2 to get 4.
n+3=4n^{2}+4n-5
Calculate 5 to the power of 1 and get 5.
n+3-4n^{2}=4n-5
Subtract 4n^{2} from both sides.
n+3-4n^{2}-4n=-5
Subtract 4n from both sides.
-3n+3-4n^{2}=-5
Combine n and -4n to get -3n.
-3n-4n^{2}=-5-3
Subtract 3 from both sides.
-3n-4n^{2}=-8
Subtract 3 from -5 to get -8.
-4n^{2}-3n=-8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4n^{2}-3n}{-4}=-\frac{8}{-4}
Divide both sides by -4.
n^{2}+\left(-\frac{3}{-4}\right)n=-\frac{8}{-4}
Dividing by -4 undoes the multiplication by -4.
n^{2}+\frac{3}{4}n=-\frac{8}{-4}
Divide -3 by -4.
n^{2}+\frac{3}{4}n=2
Divide -8 by -4.
n^{2}+\frac{3}{4}n+\left(\frac{3}{8}\right)^{2}=2+\left(\frac{3}{8}\right)^{2}
Divide \frac{3}{4}, the coefficient of the x term, by 2 to get \frac{3}{8}. Then add the square of \frac{3}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+\frac{3}{4}n+\frac{9}{64}=2+\frac{9}{64}
Square \frac{3}{8} by squaring both the numerator and the denominator of the fraction.
n^{2}+\frac{3}{4}n+\frac{9}{64}=\frac{137}{64}
Add 2 to \frac{9}{64}.
\left(n+\frac{3}{8}\right)^{2}=\frac{137}{64}
Factor n^{2}+\frac{3}{4}n+\frac{9}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{3}{8}\right)^{2}}=\sqrt{\frac{137}{64}}
Take the square root of both sides of the equation.
n+\frac{3}{8}=\frac{\sqrt{137}}{8} n+\frac{3}{8}=-\frac{\sqrt{137}}{8}
Simplify.
n=\frac{\sqrt{137}-3}{8} n=\frac{-\sqrt{137}-3}{8}
Subtract \frac{3}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}