Evaluate
4n+6
Expand
4n+6
Share
Copied to clipboard
n^{2}+3n+2n+6-\left(n+1\right)n
Apply the distributive property by multiplying each term of n+2 by each term of n+3.
n^{2}+5n+6-\left(n+1\right)n
Combine 3n and 2n to get 5n.
n^{2}+5n+6-\left(n^{2}+n\right)
Use the distributive property to multiply n+1 by n.
n^{2}+5n+6-n^{2}-n
To find the opposite of n^{2}+n, find the opposite of each term.
5n+6-n
Combine n^{2} and -n^{2} to get 0.
4n+6
Combine 5n and -n to get 4n.
n^{2}+3n+2n+6-\left(n+1\right)n
Apply the distributive property by multiplying each term of n+2 by each term of n+3.
n^{2}+5n+6-\left(n+1\right)n
Combine 3n and 2n to get 5n.
n^{2}+5n+6-\left(n^{2}+n\right)
Use the distributive property to multiply n+1 by n.
n^{2}+5n+6-n^{2}-n
To find the opposite of n^{2}+n, find the opposite of each term.
5n+6-n
Combine n^{2} and -n^{2} to get 0.
4n+6
Combine 5n and -n to get 4n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}