Solve for n
n = \frac{\sqrt{581} - 3}{2} \approx 10.551970793
n=\frac{-\sqrt{581}-3}{2}\approx -13.551970793
Share
Copied to clipboard
n^{2}+3n+2=145
Use the distributive property to multiply n+2 by n+1 and combine like terms.
n^{2}+3n+2-145=0
Subtract 145 from both sides.
n^{2}+3n-143=0
Subtract 145 from 2 to get -143.
n=\frac{-3±\sqrt{3^{2}-4\left(-143\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 3 for b, and -143 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-3±\sqrt{9-4\left(-143\right)}}{2}
Square 3.
n=\frac{-3±\sqrt{9+572}}{2}
Multiply -4 times -143.
n=\frac{-3±\sqrt{581}}{2}
Add 9 to 572.
n=\frac{\sqrt{581}-3}{2}
Now solve the equation n=\frac{-3±\sqrt{581}}{2} when ± is plus. Add -3 to \sqrt{581}.
n=\frac{-\sqrt{581}-3}{2}
Now solve the equation n=\frac{-3±\sqrt{581}}{2} when ± is minus. Subtract \sqrt{581} from -3.
n=\frac{\sqrt{581}-3}{2} n=\frac{-\sqrt{581}-3}{2}
The equation is now solved.
n^{2}+3n+2=145
Use the distributive property to multiply n+2 by n+1 and combine like terms.
n^{2}+3n=145-2
Subtract 2 from both sides.
n^{2}+3n=143
Subtract 2 from 145 to get 143.
n^{2}+3n+\left(\frac{3}{2}\right)^{2}=143+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+3n+\frac{9}{4}=143+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}+3n+\frac{9}{4}=\frac{581}{4}
Add 143 to \frac{9}{4}.
\left(n+\frac{3}{2}\right)^{2}=\frac{581}{4}
Factor n^{2}+3n+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{3}{2}\right)^{2}}=\sqrt{\frac{581}{4}}
Take the square root of both sides of the equation.
n+\frac{3}{2}=\frac{\sqrt{581}}{2} n+\frac{3}{2}=-\frac{\sqrt{581}}{2}
Simplify.
n=\frac{\sqrt{581}-3}{2} n=\frac{-\sqrt{581}-3}{2}
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}