Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

n^{2}+2n+1+\left(n+2\right)^{2}=\left(n+3\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(n+1\right)^{2}.
n^{2}+2n+1+n^{2}+4n+4=\left(n+3\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(n+2\right)^{2}.
2n^{2}+2n+1+4n+4=\left(n+3\right)^{2}
Combine n^{2} and n^{2} to get 2n^{2}.
2n^{2}+6n+1+4=\left(n+3\right)^{2}
Combine 2n and 4n to get 6n.
2n^{2}+6n+5=\left(n+3\right)^{2}
Add 1 and 4 to get 5.
2n^{2}+6n+5=n^{2}+6n+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(n+3\right)^{2}.
2n^{2}+6n+5-n^{2}=6n+9
Subtract n^{2} from both sides.
n^{2}+6n+5=6n+9
Combine 2n^{2} and -n^{2} to get n^{2}.
n^{2}+6n+5-6n=9
Subtract 6n from both sides.
n^{2}+5=9
Combine 6n and -6n to get 0.
n^{2}+5-9=0
Subtract 9 from both sides.
n^{2}-4=0
Subtract 9 from 5 to get -4.
\left(n-2\right)\left(n+2\right)=0
Consider n^{2}-4. Rewrite n^{2}-4 as n^{2}-2^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
n=2 n=-2
To find equation solutions, solve n-2=0 and n+2=0.
n^{2}+2n+1+\left(n+2\right)^{2}=\left(n+3\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(n+1\right)^{2}.
n^{2}+2n+1+n^{2}+4n+4=\left(n+3\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(n+2\right)^{2}.
2n^{2}+2n+1+4n+4=\left(n+3\right)^{2}
Combine n^{2} and n^{2} to get 2n^{2}.
2n^{2}+6n+1+4=\left(n+3\right)^{2}
Combine 2n and 4n to get 6n.
2n^{2}+6n+5=\left(n+3\right)^{2}
Add 1 and 4 to get 5.
2n^{2}+6n+5=n^{2}+6n+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(n+3\right)^{2}.
2n^{2}+6n+5-n^{2}=6n+9
Subtract n^{2} from both sides.
n^{2}+6n+5=6n+9
Combine 2n^{2} and -n^{2} to get n^{2}.
n^{2}+6n+5-6n=9
Subtract 6n from both sides.
n^{2}+5=9
Combine 6n and -6n to get 0.
n^{2}=9-5
Subtract 5 from both sides.
n^{2}=4
Subtract 5 from 9 to get 4.
n=2 n=-2
Take the square root of both sides of the equation.
n^{2}+2n+1+\left(n+2\right)^{2}=\left(n+3\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(n+1\right)^{2}.
n^{2}+2n+1+n^{2}+4n+4=\left(n+3\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(n+2\right)^{2}.
2n^{2}+2n+1+4n+4=\left(n+3\right)^{2}
Combine n^{2} and n^{2} to get 2n^{2}.
2n^{2}+6n+1+4=\left(n+3\right)^{2}
Combine 2n and 4n to get 6n.
2n^{2}+6n+5=\left(n+3\right)^{2}
Add 1 and 4 to get 5.
2n^{2}+6n+5=n^{2}+6n+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(n+3\right)^{2}.
2n^{2}+6n+5-n^{2}=6n+9
Subtract n^{2} from both sides.
n^{2}+6n+5=6n+9
Combine 2n^{2} and -n^{2} to get n^{2}.
n^{2}+6n+5-6n=9
Subtract 6n from both sides.
n^{2}+5=9
Combine 6n and -6n to get 0.
n^{2}+5-9=0
Subtract 9 from both sides.
n^{2}-4=0
Subtract 9 from 5 to get -4.
n=\frac{0±\sqrt{0^{2}-4\left(-4\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{0±\sqrt{-4\left(-4\right)}}{2}
Square 0.
n=\frac{0±\sqrt{16}}{2}
Multiply -4 times -4.
n=\frac{0±4}{2}
Take the square root of 16.
n=2
Now solve the equation n=\frac{0±4}{2} when ± is plus. Divide 4 by 2.
n=-2
Now solve the equation n=\frac{0±4}{2} when ± is minus. Divide -4 by 2.
n=2 n=-2
The equation is now solved.