Solve for m
m=\sqrt{5}+2\approx 4.236067977
m=2-\sqrt{5}\approx -0.236067977
Share
Copied to clipboard
m^{2}-8m+16+4\left(m-3\right)=5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-4\right)^{2}.
m^{2}-8m+16+4m-12=5
Use the distributive property to multiply 4 by m-3.
m^{2}-4m+16-12=5
Combine -8m and 4m to get -4m.
m^{2}-4m+4=5
Subtract 12 from 16 to get 4.
m^{2}-4m+4-5=0
Subtract 5 from both sides.
m^{2}-4m-1=0
Subtract 5 from 4 to get -1.
m=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)}}{2}
Square -4.
m=\frac{-\left(-4\right)±\sqrt{16+4}}{2}
Multiply -4 times -1.
m=\frac{-\left(-4\right)±\sqrt{20}}{2}
Add 16 to 4.
m=\frac{-\left(-4\right)±2\sqrt{5}}{2}
Take the square root of 20.
m=\frac{4±2\sqrt{5}}{2}
The opposite of -4 is 4.
m=\frac{2\sqrt{5}+4}{2}
Now solve the equation m=\frac{4±2\sqrt{5}}{2} when ± is plus. Add 4 to 2\sqrt{5}.
m=\sqrt{5}+2
Divide 4+2\sqrt{5} by 2.
m=\frac{4-2\sqrt{5}}{2}
Now solve the equation m=\frac{4±2\sqrt{5}}{2} when ± is minus. Subtract 2\sqrt{5} from 4.
m=2-\sqrt{5}
Divide 4-2\sqrt{5} by 2.
m=\sqrt{5}+2 m=2-\sqrt{5}
The equation is now solved.
m^{2}-8m+16+4\left(m-3\right)=5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-4\right)^{2}.
m^{2}-8m+16+4m-12=5
Use the distributive property to multiply 4 by m-3.
m^{2}-4m+16-12=5
Combine -8m and 4m to get -4m.
m^{2}-4m+4=5
Subtract 12 from 16 to get 4.
\left(m-2\right)^{2}=5
Factor m^{2}-4m+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-2\right)^{2}}=\sqrt{5}
Take the square root of both sides of the equation.
m-2=\sqrt{5} m-2=-\sqrt{5}
Simplify.
m=\sqrt{5}+2 m=2-\sqrt{5}
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}