Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

m^{2}-8m+16+4\left(m-3\right)=5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-4\right)^{2}.
m^{2}-8m+16+4m-12=5
Use the distributive property to multiply 4 by m-3.
m^{2}-4m+16-12=5
Combine -8m and 4m to get -4m.
m^{2}-4m+4=5
Subtract 12 from 16 to get 4.
m^{2}-4m+4-5=0
Subtract 5 from both sides.
m^{2}-4m-1=0
Subtract 5 from 4 to get -1.
m=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)}}{2}
Square -4.
m=\frac{-\left(-4\right)±\sqrt{16+4}}{2}
Multiply -4 times -1.
m=\frac{-\left(-4\right)±\sqrt{20}}{2}
Add 16 to 4.
m=\frac{-\left(-4\right)±2\sqrt{5}}{2}
Take the square root of 20.
m=\frac{4±2\sqrt{5}}{2}
The opposite of -4 is 4.
m=\frac{2\sqrt{5}+4}{2}
Now solve the equation m=\frac{4±2\sqrt{5}}{2} when ± is plus. Add 4 to 2\sqrt{5}.
m=\sqrt{5}+2
Divide 4+2\sqrt{5} by 2.
m=\frac{4-2\sqrt{5}}{2}
Now solve the equation m=\frac{4±2\sqrt{5}}{2} when ± is minus. Subtract 2\sqrt{5} from 4.
m=2-\sqrt{5}
Divide 4-2\sqrt{5} by 2.
m=\sqrt{5}+2 m=2-\sqrt{5}
The equation is now solved.
m^{2}-8m+16+4\left(m-3\right)=5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-4\right)^{2}.
m^{2}-8m+16+4m-12=5
Use the distributive property to multiply 4 by m-3.
m^{2}-4m+16-12=5
Combine -8m and 4m to get -4m.
m^{2}-4m+4=5
Subtract 12 from 16 to get 4.
\left(m-2\right)^{2}=5
Factor m^{2}-4m+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-2\right)^{2}}=\sqrt{5}
Take the square root of both sides of the equation.
m-2=\sqrt{5} m-2=-\sqrt{5}
Simplify.
m=\sqrt{5}+2 m=2-\sqrt{5}
Add 2 to both sides of the equation.