Solve for m (complex solution)
m=\frac{2x\left(x+3\right)}{x^{2}-3x+6}
x\neq \frac{3+\sqrt{15}i}{2}\text{ and }x\neq \frac{-\sqrt{15}i+3}{2}
Solve for m
m=\frac{2x\left(x+3\right)}{x^{2}-3x+6}
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{3\left(12+28m-5m^{2}\right)}+3m+6}{2\left(m-2\right)}\text{; }x=\frac{-\sqrt{3\left(12+28m-5m^{2}\right)}+3m+6}{2\left(m-2\right)}\text{, }&m\neq 2\\x=1\text{, }&m=2\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{3\left(12+28m-5m^{2}\right)}+3m+6}{2\left(m-2\right)}\text{; }x=\frac{-\sqrt{3\left(12+28m-5m^{2}\right)}+3m+6}{2\left(m-2\right)}\text{, }&m\neq 2\text{ and }m\leq 6\text{ and }m\geq -\frac{2}{5}\\x=1\text{, }&m=2\end{matrix}\right.
Graph
Share
Copied to clipboard
mx^{2}-2x^{2}-3\left(m+2\right)x+6m=0
Use the distributive property to multiply m-2 by x^{2}.
mx^{2}-2x^{2}+\left(-3m-6\right)x+6m=0
Use the distributive property to multiply -3 by m+2.
mx^{2}-2x^{2}-3mx-6x+6m=0
Use the distributive property to multiply -3m-6 by x.
mx^{2}-3mx-6x+6m=2x^{2}
Add 2x^{2} to both sides. Anything plus zero gives itself.
mx^{2}-3mx+6m=2x^{2}+6x
Add 6x to both sides.
\left(x^{2}-3x+6\right)m=2x^{2}+6x
Combine all terms containing m.
\frac{\left(x^{2}-3x+6\right)m}{x^{2}-3x+6}=\frac{2x\left(x+3\right)}{x^{2}-3x+6}
Divide both sides by x^{2}-3x+6.
m=\frac{2x\left(x+3\right)}{x^{2}-3x+6}
Dividing by x^{2}-3x+6 undoes the multiplication by x^{2}-3x+6.
mx^{2}-2x^{2}-3\left(m+2\right)x+6m=0
Use the distributive property to multiply m-2 by x^{2}.
mx^{2}-2x^{2}+\left(-3m-6\right)x+6m=0
Use the distributive property to multiply -3 by m+2.
mx^{2}-2x^{2}-3mx-6x+6m=0
Use the distributive property to multiply -3m-6 by x.
mx^{2}-3mx-6x+6m=2x^{2}
Add 2x^{2} to both sides. Anything plus zero gives itself.
mx^{2}-3mx+6m=2x^{2}+6x
Add 6x to both sides.
\left(x^{2}-3x+6\right)m=2x^{2}+6x
Combine all terms containing m.
\frac{\left(x^{2}-3x+6\right)m}{x^{2}-3x+6}=\frac{2x\left(x+3\right)}{x^{2}-3x+6}
Divide both sides by x^{2}-3x+6.
m=\frac{2x\left(x+3\right)}{x^{2}-3x+6}
Dividing by x^{2}-3x+6 undoes the multiplication by x^{2}-3x+6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}