Solve for m (complex solution)
\left\{\begin{matrix}m=-\frac{3+2y-x}{x}\text{, }&x\neq 0\\m\in \mathrm{C}\text{, }&y=-\frac{3}{2}\text{ and }x=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{2y+3}{m-1}\text{, }&m\neq 1\\x\in \mathrm{C}\text{, }&y=-\frac{3}{2}\text{ and }m=1\end{matrix}\right.
Solve for m
\left\{\begin{matrix}m=-\frac{3+2y-x}{x}\text{, }&x\neq 0\\m\in \mathrm{R}\text{, }&y=-\frac{3}{2}\text{ and }x=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{2y+3}{m-1}\text{, }&m\neq 1\\x\in \mathrm{R}\text{, }&y=-\frac{3}{2}\text{ and }m=1\end{matrix}\right.
Graph
Share
Copied to clipboard
mx-x+2y+3=0
Use the distributive property to multiply m-1 by x.
mx+2y+3=x
Add x to both sides. Anything plus zero gives itself.
mx+3=x-2y
Subtract 2y from both sides.
mx=x-2y-3
Subtract 3 from both sides.
xm=x-2y-3
The equation is in standard form.
\frac{xm}{x}=\frac{x-2y-3}{x}
Divide both sides by x.
m=\frac{x-2y-3}{x}
Dividing by x undoes the multiplication by x.
mx-x+2y+3=0
Use the distributive property to multiply m-1 by x.
mx-x+3=-2y
Subtract 2y from both sides. Anything subtracted from zero gives its negation.
mx-x=-2y-3
Subtract 3 from both sides.
\left(m-1\right)x=-2y-3
Combine all terms containing x.
\frac{\left(m-1\right)x}{m-1}=\frac{-2y-3}{m-1}
Divide both sides by m-1.
x=\frac{-2y-3}{m-1}
Dividing by m-1 undoes the multiplication by m-1.
x=-\frac{2y+3}{m-1}
Divide -2y-3 by m-1.
mx-x+2y+3=0
Use the distributive property to multiply m-1 by x.
mx+2y+3=x
Add x to both sides. Anything plus zero gives itself.
mx+3=x-2y
Subtract 2y from both sides.
mx=x-2y-3
Subtract 3 from both sides.
xm=x-2y-3
The equation is in standard form.
\frac{xm}{x}=\frac{x-2y-3}{x}
Divide both sides by x.
m=\frac{x-2y-3}{x}
Dividing by x undoes the multiplication by x.
mx-x+2y+3=0
Use the distributive property to multiply m-1 by x.
mx-x+3=-2y
Subtract 2y from both sides. Anything subtracted from zero gives its negation.
mx-x=-2y-3
Subtract 3 from both sides.
\left(m-1\right)x=-2y-3
Combine all terms containing x.
\frac{\left(m-1\right)x}{m-1}=\frac{-2y-3}{m-1}
Divide both sides by m-1.
x=\frac{-2y-3}{m-1}
Dividing by m-1 undoes the multiplication by m-1.
x=-\frac{2y+3}{m-1}
Divide -2y-3 by m-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}