Evaluate
7m-106
Expand
7m-106
Share
Copied to clipboard
6m-m^{2}-6+m-\left(10-m\right)\left(m+10\right)
Apply the distributive property by multiplying each term of m-1 by each term of 6-m.
7m-m^{2}-6-\left(10-m\right)\left(m+10\right)
Combine 6m and m to get 7m.
7m-m^{2}-6-\left(10^{2}-m^{2}\right)
Consider \left(10-m\right)\left(m+10\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
7m-m^{2}-6-\left(100-m^{2}\right)
Calculate 10 to the power of 2 and get 100.
7m-m^{2}-6-100-\left(-m^{2}\right)
To find the opposite of 100-m^{2}, find the opposite of each term.
7m-m^{2}-6-100+m^{2}
The opposite of -m^{2} is m^{2}.
7m-m^{2}-106+m^{2}
Subtract 100 from -6 to get -106.
7m-106
Combine -m^{2} and m^{2} to get 0.
6m-m^{2}-6+m-\left(10-m\right)\left(m+10\right)
Apply the distributive property by multiplying each term of m-1 by each term of 6-m.
7m-m^{2}-6-\left(10-m\right)\left(m+10\right)
Combine 6m and m to get 7m.
7m-m^{2}-6-\left(10^{2}-m^{2}\right)
Consider \left(10-m\right)\left(m+10\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
7m-m^{2}-6-\left(100-m^{2}\right)
Calculate 10 to the power of 2 and get 100.
7m-m^{2}-6-100-\left(-m^{2}\right)
To find the opposite of 100-m^{2}, find the opposite of each term.
7m-m^{2}-6-100+m^{2}
The opposite of -m^{2} is m^{2}.
7m-m^{2}-106+m^{2}
Subtract 100 from -6 to get -106.
7m-106
Combine -m^{2} and m^{2} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}