Solve for m
m=3
m=5
Share
Copied to clipboard
m^{2}-2m+1+3\left(m-5\right)^{2}=16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-1\right)^{2}.
m^{2}-2m+1+3\left(m^{2}-10m+25\right)=16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-5\right)^{2}.
m^{2}-2m+1+3m^{2}-30m+75=16
Use the distributive property to multiply 3 by m^{2}-10m+25.
4m^{2}-2m+1-30m+75=16
Combine m^{2} and 3m^{2} to get 4m^{2}.
4m^{2}-32m+1+75=16
Combine -2m and -30m to get -32m.
4m^{2}-32m+76=16
Add 1 and 75 to get 76.
4m^{2}-32m+76-16=0
Subtract 16 from both sides.
4m^{2}-32m+60=0
Subtract 16 from 76 to get 60.
m^{2}-8m+15=0
Divide both sides by 4.
a+b=-8 ab=1\times 15=15
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as m^{2}+am+bm+15. To find a and b, set up a system to be solved.
-1,-15 -3,-5
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 15.
-1-15=-16 -3-5=-8
Calculate the sum for each pair.
a=-5 b=-3
The solution is the pair that gives sum -8.
\left(m^{2}-5m\right)+\left(-3m+15\right)
Rewrite m^{2}-8m+15 as \left(m^{2}-5m\right)+\left(-3m+15\right).
m\left(m-5\right)-3\left(m-5\right)
Factor out m in the first and -3 in the second group.
\left(m-5\right)\left(m-3\right)
Factor out common term m-5 by using distributive property.
m=5 m=3
To find equation solutions, solve m-5=0 and m-3=0.
m^{2}-2m+1+3\left(m-5\right)^{2}=16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-1\right)^{2}.
m^{2}-2m+1+3\left(m^{2}-10m+25\right)=16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-5\right)^{2}.
m^{2}-2m+1+3m^{2}-30m+75=16
Use the distributive property to multiply 3 by m^{2}-10m+25.
4m^{2}-2m+1-30m+75=16
Combine m^{2} and 3m^{2} to get 4m^{2}.
4m^{2}-32m+1+75=16
Combine -2m and -30m to get -32m.
4m^{2}-32m+76=16
Add 1 and 75 to get 76.
4m^{2}-32m+76-16=0
Subtract 16 from both sides.
4m^{2}-32m+60=0
Subtract 16 from 76 to get 60.
m=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 4\times 60}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -32 for b, and 60 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-32\right)±\sqrt{1024-4\times 4\times 60}}{2\times 4}
Square -32.
m=\frac{-\left(-32\right)±\sqrt{1024-16\times 60}}{2\times 4}
Multiply -4 times 4.
m=\frac{-\left(-32\right)±\sqrt{1024-960}}{2\times 4}
Multiply -16 times 60.
m=\frac{-\left(-32\right)±\sqrt{64}}{2\times 4}
Add 1024 to -960.
m=\frac{-\left(-32\right)±8}{2\times 4}
Take the square root of 64.
m=\frac{32±8}{2\times 4}
The opposite of -32 is 32.
m=\frac{32±8}{8}
Multiply 2 times 4.
m=\frac{40}{8}
Now solve the equation m=\frac{32±8}{8} when ± is plus. Add 32 to 8.
m=5
Divide 40 by 8.
m=\frac{24}{8}
Now solve the equation m=\frac{32±8}{8} when ± is minus. Subtract 8 from 32.
m=3
Divide 24 by 8.
m=5 m=3
The equation is now solved.
m^{2}-2m+1+3\left(m-5\right)^{2}=16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-1\right)^{2}.
m^{2}-2m+1+3\left(m^{2}-10m+25\right)=16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-5\right)^{2}.
m^{2}-2m+1+3m^{2}-30m+75=16
Use the distributive property to multiply 3 by m^{2}-10m+25.
4m^{2}-2m+1-30m+75=16
Combine m^{2} and 3m^{2} to get 4m^{2}.
4m^{2}-32m+1+75=16
Combine -2m and -30m to get -32m.
4m^{2}-32m+76=16
Add 1 and 75 to get 76.
4m^{2}-32m=16-76
Subtract 76 from both sides.
4m^{2}-32m=-60
Subtract 76 from 16 to get -60.
\frac{4m^{2}-32m}{4}=-\frac{60}{4}
Divide both sides by 4.
m^{2}+\left(-\frac{32}{4}\right)m=-\frac{60}{4}
Dividing by 4 undoes the multiplication by 4.
m^{2}-8m=-\frac{60}{4}
Divide -32 by 4.
m^{2}-8m=-15
Divide -60 by 4.
m^{2}-8m+\left(-4\right)^{2}=-15+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-8m+16=-15+16
Square -4.
m^{2}-8m+16=1
Add -15 to 16.
\left(m-4\right)^{2}=1
Factor m^{2}-8m+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-4\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
m-4=1 m-4=-1
Simplify.
m=5 m=3
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}