Solve for m
m=\frac{-\left(\sqrt{2}+\sqrt{6}\right)\sqrt[4]{3}i+2}{2}\approx 1-2.542459757i
m=\frac{\left(\sqrt{2}+\sqrt{6}\right)\sqrt[4]{3}i+2}{2}\approx 1+2.542459757i
Share
Copied to clipboard
\left(m-1\right)^{2}=1-\left(\sqrt{3}+1\right)^{2}
Subtracting \left(\sqrt{3}+1\right)^{2} from itself leaves 0.
\left(m-1\right)^{2}=-2\sqrt{3}-3
Subtract \left(\sqrt{3}+1\right)^{2} from 1.
m-1=i\sqrt{2\sqrt{3}+3} m-1=-i\sqrt{2\sqrt{3}+3}
Take the square root of both sides of the equation.
m-1-\left(-1\right)=i\sqrt{2\sqrt{3}+3}-\left(-1\right) m-1-\left(-1\right)=-\frac{\sqrt{2}+\sqrt{6}}{2}\sqrt[4]{3}i-\left(-1\right)
Add 1 to both sides of the equation.
m=i\sqrt{2\sqrt{3}+3}-\left(-1\right) m=-\frac{\sqrt{2}+\sqrt{6}}{2}\sqrt[4]{3}i-\left(-1\right)
Subtracting -1 from itself leaves 0.
m=\frac{\sqrt{2}\sqrt[4]{3}i}{2}+\frac{\sqrt[4]{108}i}{2}+1
Subtract -1 from i\sqrt{3+2\sqrt{3}}.
m=-\frac{\left(\sqrt{2}+\sqrt{6}\right)\sqrt[4]{3}i}{2}+1
Subtract -1 from -i\sqrt[4]{3}\times \frac{\sqrt{6}+\sqrt{2}}{2}.
m=\frac{\sqrt{2}\sqrt[4]{3}i}{2}+\frac{\sqrt[4]{108}i}{2}+1 m=-\frac{\left(\sqrt{2}+\sqrt{6}\right)\sqrt[4]{3}i}{2}+1
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}