Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

m^{3}-4m^{2}-10m+40=\left(m^{2}-2m-8\right)\left(m-3\right)
Use the distributive property to multiply m^{2}-10 by m-4.
m^{3}-4m^{2}-10m+40=m^{3}-5m^{2}-2m+24
Use the distributive property to multiply m^{2}-2m-8 by m-3 and combine like terms.
m^{3}-4m^{2}-10m+40-m^{3}=-5m^{2}-2m+24
Subtract m^{3} from both sides.
-4m^{2}-10m+40=-5m^{2}-2m+24
Combine m^{3} and -m^{3} to get 0.
-4m^{2}-10m+40+5m^{2}=-2m+24
Add 5m^{2} to both sides.
m^{2}-10m+40=-2m+24
Combine -4m^{2} and 5m^{2} to get m^{2}.
m^{2}-10m+40+2m=24
Add 2m to both sides.
m^{2}-8m+40=24
Combine -10m and 2m to get -8m.
m^{2}-8m+40-24=0
Subtract 24 from both sides.
m^{2}-8m+16=0
Subtract 24 from 40 to get 16.
a+b=-8 ab=16
To solve the equation, factor m^{2}-8m+16 using formula m^{2}+\left(a+b\right)m+ab=\left(m+a\right)\left(m+b\right). To find a and b, set up a system to be solved.
-1,-16 -2,-8 -4,-4
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 16.
-1-16=-17 -2-8=-10 -4-4=-8
Calculate the sum for each pair.
a=-4 b=-4
The solution is the pair that gives sum -8.
\left(m-4\right)\left(m-4\right)
Rewrite factored expression \left(m+a\right)\left(m+b\right) using the obtained values.
\left(m-4\right)^{2}
Rewrite as a binomial square.
m=4
To find equation solution, solve m-4=0.
m^{3}-4m^{2}-10m+40=\left(m^{2}-2m-8\right)\left(m-3\right)
Use the distributive property to multiply m^{2}-10 by m-4.
m^{3}-4m^{2}-10m+40=m^{3}-5m^{2}-2m+24
Use the distributive property to multiply m^{2}-2m-8 by m-3 and combine like terms.
m^{3}-4m^{2}-10m+40-m^{3}=-5m^{2}-2m+24
Subtract m^{3} from both sides.
-4m^{2}-10m+40=-5m^{2}-2m+24
Combine m^{3} and -m^{3} to get 0.
-4m^{2}-10m+40+5m^{2}=-2m+24
Add 5m^{2} to both sides.
m^{2}-10m+40=-2m+24
Combine -4m^{2} and 5m^{2} to get m^{2}.
m^{2}-10m+40+2m=24
Add 2m to both sides.
m^{2}-8m+40=24
Combine -10m and 2m to get -8m.
m^{2}-8m+40-24=0
Subtract 24 from both sides.
m^{2}-8m+16=0
Subtract 24 from 40 to get 16.
a+b=-8 ab=1\times 16=16
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as m^{2}+am+bm+16. To find a and b, set up a system to be solved.
-1,-16 -2,-8 -4,-4
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 16.
-1-16=-17 -2-8=-10 -4-4=-8
Calculate the sum for each pair.
a=-4 b=-4
The solution is the pair that gives sum -8.
\left(m^{2}-4m\right)+\left(-4m+16\right)
Rewrite m^{2}-8m+16 as \left(m^{2}-4m\right)+\left(-4m+16\right).
m\left(m-4\right)-4\left(m-4\right)
Factor out m in the first and -4 in the second group.
\left(m-4\right)\left(m-4\right)
Factor out common term m-4 by using distributive property.
\left(m-4\right)^{2}
Rewrite as a binomial square.
m=4
To find equation solution, solve m-4=0.
m^{3}-4m^{2}-10m+40=\left(m^{2}-2m-8\right)\left(m-3\right)
Use the distributive property to multiply m^{2}-10 by m-4.
m^{3}-4m^{2}-10m+40=m^{3}-5m^{2}-2m+24
Use the distributive property to multiply m^{2}-2m-8 by m-3 and combine like terms.
m^{3}-4m^{2}-10m+40-m^{3}=-5m^{2}-2m+24
Subtract m^{3} from both sides.
-4m^{2}-10m+40=-5m^{2}-2m+24
Combine m^{3} and -m^{3} to get 0.
-4m^{2}-10m+40+5m^{2}=-2m+24
Add 5m^{2} to both sides.
m^{2}-10m+40=-2m+24
Combine -4m^{2} and 5m^{2} to get m^{2}.
m^{2}-10m+40+2m=24
Add 2m to both sides.
m^{2}-8m+40=24
Combine -10m and 2m to get -8m.
m^{2}-8m+40-24=0
Subtract 24 from both sides.
m^{2}-8m+16=0
Subtract 24 from 40 to get 16.
m=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 16}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -8 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-8\right)±\sqrt{64-4\times 16}}{2}
Square -8.
m=\frac{-\left(-8\right)±\sqrt{64-64}}{2}
Multiply -4 times 16.
m=\frac{-\left(-8\right)±\sqrt{0}}{2}
Add 64 to -64.
m=-\frac{-8}{2}
Take the square root of 0.
m=\frac{8}{2}
The opposite of -8 is 8.
m=4
Divide 8 by 2.
m^{3}-4m^{2}-10m+40=\left(m^{2}-2m-8\right)\left(m-3\right)
Use the distributive property to multiply m^{2}-10 by m-4.
m^{3}-4m^{2}-10m+40=m^{3}-5m^{2}-2m+24
Use the distributive property to multiply m^{2}-2m-8 by m-3 and combine like terms.
m^{3}-4m^{2}-10m+40-m^{3}=-5m^{2}-2m+24
Subtract m^{3} from both sides.
-4m^{2}-10m+40=-5m^{2}-2m+24
Combine m^{3} and -m^{3} to get 0.
-4m^{2}-10m+40+5m^{2}=-2m+24
Add 5m^{2} to both sides.
m^{2}-10m+40=-2m+24
Combine -4m^{2} and 5m^{2} to get m^{2}.
m^{2}-10m+40+2m=24
Add 2m to both sides.
m^{2}-8m+40=24
Combine -10m and 2m to get -8m.
m^{2}-8m=24-40
Subtract 40 from both sides.
m^{2}-8m=-16
Subtract 40 from 24 to get -16.
m^{2}-8m+\left(-4\right)^{2}=-16+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-8m+16=-16+16
Square -4.
m^{2}-8m+16=0
Add -16 to 16.
\left(m-4\right)^{2}=0
Factor m^{2}-8m+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-4\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
m-4=0 m-4=0
Simplify.
m=4 m=4
Add 4 to both sides of the equation.
m=4
The equation is now solved. Solutions are the same.