Solve for m (complex solution)
\left\{\begin{matrix}m=-\frac{n\left(x+1\right)}{x-1}\text{, }&x\neq 1\\m\in \mathrm{C}\text{, }&x=-1\text{ or }\left(n=0\text{ and }x=1\right)\end{matrix}\right.
Solve for n (complex solution)
\left\{\begin{matrix}n=-\frac{m\left(x-1\right)}{x+1}\text{, }&x\neq -1\\n\in \mathrm{C}\text{, }&x=-1\end{matrix}\right.
Solve for m
\left\{\begin{matrix}m=-\frac{n\left(x+1\right)}{x-1}\text{, }&x\neq 1\\m\in \mathrm{R}\text{, }&x=-1\text{ or }\left(n=0\text{ and }x=1\right)\end{matrix}\right.
Solve for n
\left\{\begin{matrix}n=-\frac{m\left(x-1\right)}{x+1}\text{, }&x\neq -1\\n\in \mathrm{R}\text{, }&x=-1\end{matrix}\right.
Graph
Share
Copied to clipboard
mx^{2}+nx^{2}+2nx=m-n
Use the distributive property to multiply m+n by x^{2}.
mx^{2}+nx^{2}+2nx-m=-n
Subtract m from both sides.
mx^{2}+2nx-m=-n-nx^{2}
Subtract nx^{2} from both sides.
mx^{2}-m=-n-nx^{2}-2nx
Subtract 2nx from both sides.
mx^{2}-m=-nx^{2}-2nx-n
Reorder the terms.
\left(x^{2}-1\right)m=-nx^{2}-2nx-n
Combine all terms containing m.
\frac{\left(x^{2}-1\right)m}{x^{2}-1}=-\frac{n\left(x+1\right)^{2}}{x^{2}-1}
Divide both sides by x^{2}-1.
m=-\frac{n\left(x+1\right)^{2}}{x^{2}-1}
Dividing by x^{2}-1 undoes the multiplication by x^{2}-1.
m=-\frac{n\left(x+1\right)}{x-1}
Divide -n\left(1+x\right)^{2} by x^{2}-1.
mx^{2}+nx^{2}+2nx=m-n
Use the distributive property to multiply m+n by x^{2}.
mx^{2}+nx^{2}+2nx+n=m
Add n to both sides.
nx^{2}+2nx+n=m-mx^{2}
Subtract mx^{2} from both sides.
nx^{2}+2nx+n=-mx^{2}+m
Reorder the terms.
\left(x^{2}+2x+1\right)n=-mx^{2}+m
Combine all terms containing n.
\left(x^{2}+2x+1\right)n=m-mx^{2}
The equation is in standard form.
\frac{\left(x^{2}+2x+1\right)n}{x^{2}+2x+1}=\frac{m-mx^{2}}{x^{2}+2x+1}
Divide both sides by x^{2}+2x+1.
n=\frac{m-mx^{2}}{x^{2}+2x+1}
Dividing by x^{2}+2x+1 undoes the multiplication by x^{2}+2x+1.
n=\frac{m\left(1-x\right)}{x+1}
Divide -mx^{2}+m by x^{2}+2x+1.
mx^{2}+nx^{2}+2nx=m-n
Use the distributive property to multiply m+n by x^{2}.
mx^{2}+nx^{2}+2nx-m=-n
Subtract m from both sides.
mx^{2}+2nx-m=-n-nx^{2}
Subtract nx^{2} from both sides.
mx^{2}-m=-n-nx^{2}-2nx
Subtract 2nx from both sides.
mx^{2}-m=-nx^{2}-2nx-n
Reorder the terms.
\left(x^{2}-1\right)m=-nx^{2}-2nx-n
Combine all terms containing m.
\frac{\left(x^{2}-1\right)m}{x^{2}-1}=-\frac{n\left(x+1\right)^{2}}{x^{2}-1}
Divide both sides by x^{2}-1.
m=-\frac{n\left(x+1\right)^{2}}{x^{2}-1}
Dividing by x^{2}-1 undoes the multiplication by x^{2}-1.
m=-\frac{n\left(x+1\right)}{x-1}
Divide -n\left(1+x\right)^{2} by x^{2}-1.
mx^{2}+nx^{2}+2nx=m-n
Use the distributive property to multiply m+n by x^{2}.
mx^{2}+nx^{2}+2nx+n=m
Add n to both sides.
nx^{2}+2nx+n=m-mx^{2}
Subtract mx^{2} from both sides.
nx^{2}+2nx+n=-mx^{2}+m
Reorder the terms.
\left(x^{2}+2x+1\right)n=-mx^{2}+m
Combine all terms containing n.
\left(x^{2}+2x+1\right)n=m-mx^{2}
The equation is in standard form.
\frac{\left(x^{2}+2x+1\right)n}{x^{2}+2x+1}=\frac{m-mx^{2}}{x^{2}+2x+1}
Divide both sides by x^{2}+2x+1.
n=\frac{m-mx^{2}}{x^{2}+2x+1}
Dividing by x^{2}+2x+1 undoes the multiplication by x^{2}+2x+1.
n=\frac{m\left(1-x\right)}{x+1}
Divide -mx^{2}+m by x^{2}+2x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}