Skip to main content
Solve for m (complex solution)
Tick mark Image
Solve for n (complex solution)
Tick mark Image
Solve for m
Tick mark Image
Solve for n
Tick mark Image
Graph

Similar Problems from Web Search

Share

mx^{2}+nx^{2}+2nx=m-n
Use the distributive property to multiply m+n by x^{2}.
mx^{2}+nx^{2}+2nx-m=-n
Subtract m from both sides.
mx^{2}+2nx-m=-n-nx^{2}
Subtract nx^{2} from both sides.
mx^{2}-m=-n-nx^{2}-2nx
Subtract 2nx from both sides.
mx^{2}-m=-nx^{2}-2nx-n
Reorder the terms.
\left(x^{2}-1\right)m=-nx^{2}-2nx-n
Combine all terms containing m.
\frac{\left(x^{2}-1\right)m}{x^{2}-1}=-\frac{n\left(x+1\right)^{2}}{x^{2}-1}
Divide both sides by x^{2}-1.
m=-\frac{n\left(x+1\right)^{2}}{x^{2}-1}
Dividing by x^{2}-1 undoes the multiplication by x^{2}-1.
m=-\frac{n\left(x+1\right)}{x-1}
Divide -n\left(1+x\right)^{2} by x^{2}-1.
mx^{2}+nx^{2}+2nx=m-n
Use the distributive property to multiply m+n by x^{2}.
mx^{2}+nx^{2}+2nx+n=m
Add n to both sides.
nx^{2}+2nx+n=m-mx^{2}
Subtract mx^{2} from both sides.
nx^{2}+2nx+n=-mx^{2}+m
Reorder the terms.
\left(x^{2}+2x+1\right)n=-mx^{2}+m
Combine all terms containing n.
\left(x^{2}+2x+1\right)n=m-mx^{2}
The equation is in standard form.
\frac{\left(x^{2}+2x+1\right)n}{x^{2}+2x+1}=\frac{m-mx^{2}}{x^{2}+2x+1}
Divide both sides by x^{2}+2x+1.
n=\frac{m-mx^{2}}{x^{2}+2x+1}
Dividing by x^{2}+2x+1 undoes the multiplication by x^{2}+2x+1.
n=\frac{m\left(1-x\right)}{x+1}
Divide -mx^{2}+m by x^{2}+2x+1.
mx^{2}+nx^{2}+2nx=m-n
Use the distributive property to multiply m+n by x^{2}.
mx^{2}+nx^{2}+2nx-m=-n
Subtract m from both sides.
mx^{2}+2nx-m=-n-nx^{2}
Subtract nx^{2} from both sides.
mx^{2}-m=-n-nx^{2}-2nx
Subtract 2nx from both sides.
mx^{2}-m=-nx^{2}-2nx-n
Reorder the terms.
\left(x^{2}-1\right)m=-nx^{2}-2nx-n
Combine all terms containing m.
\frac{\left(x^{2}-1\right)m}{x^{2}-1}=-\frac{n\left(x+1\right)^{2}}{x^{2}-1}
Divide both sides by x^{2}-1.
m=-\frac{n\left(x+1\right)^{2}}{x^{2}-1}
Dividing by x^{2}-1 undoes the multiplication by x^{2}-1.
m=-\frac{n\left(x+1\right)}{x-1}
Divide -n\left(1+x\right)^{2} by x^{2}-1.
mx^{2}+nx^{2}+2nx=m-n
Use the distributive property to multiply m+n by x^{2}.
mx^{2}+nx^{2}+2nx+n=m
Add n to both sides.
nx^{2}+2nx+n=m-mx^{2}
Subtract mx^{2} from both sides.
nx^{2}+2nx+n=-mx^{2}+m
Reorder the terms.
\left(x^{2}+2x+1\right)n=-mx^{2}+m
Combine all terms containing n.
\left(x^{2}+2x+1\right)n=m-mx^{2}
The equation is in standard form.
\frac{\left(x^{2}+2x+1\right)n}{x^{2}+2x+1}=\frac{m-mx^{2}}{x^{2}+2x+1}
Divide both sides by x^{2}+2x+1.
n=\frac{m-mx^{2}}{x^{2}+2x+1}
Dividing by x^{2}+2x+1 undoes the multiplication by x^{2}+2x+1.
n=\frac{m\left(1-x\right)}{x+1}
Divide -mx^{2}+m by x^{2}+2x+1.