Solve for m
m=-\frac{2\left(3x^{2}+3x+1\right)}{x\left(x+1\right)}
x\neq -1\text{ and }x\neq 0
Solve for x (complex solution)
x=\frac{\sqrt{\left(m-2\right)\left(m+6\right)}-m-6}{2\left(m+6\right)}
x=-\frac{\sqrt{\left(m-2\right)\left(m+6\right)}+m+6}{2\left(m+6\right)}\text{, }m\neq -6
Solve for x
x=\frac{\sqrt{\left(m-2\right)\left(m+6\right)}-m-6}{2\left(m+6\right)}
x=-\frac{\sqrt{\left(m-2\right)\left(m+6\right)}+m+6}{2\left(m+6\right)}\text{, }m\geq 2\text{ or }m<-6
Graph
Share
Copied to clipboard
mx^{2}+6x^{2}+\left(m+6\right)x+2=0
Use the distributive property to multiply m+6 by x^{2}.
mx^{2}+6x^{2}+mx+6x+2=0
Use the distributive property to multiply m+6 by x.
mx^{2}+mx+6x+2=-6x^{2}
Subtract 6x^{2} from both sides. Anything subtracted from zero gives its negation.
mx^{2}+mx+2=-6x^{2}-6x
Subtract 6x from both sides.
mx^{2}+mx=-6x^{2}-6x-2
Subtract 2 from both sides.
\left(x^{2}+x\right)m=-6x^{2}-6x-2
Combine all terms containing m.
\frac{\left(x^{2}+x\right)m}{x^{2}+x}=\frac{-6x^{2}-6x-2}{x^{2}+x}
Divide both sides by x^{2}+x.
m=\frac{-6x^{2}-6x-2}{x^{2}+x}
Dividing by x^{2}+x undoes the multiplication by x^{2}+x.
m=-\frac{2\left(3x^{2}+3x+1\right)}{x\left(x+1\right)}
Divide -6x^{2}-6x-2 by x^{2}+x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}