Solve for x (complex solution)
\left\{\begin{matrix}\\x=m-5\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&m=-5\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=m-5\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&m=-5\end{matrix}\right.
Solve for m
m=-5
m=x+5
Graph
Share
Copied to clipboard
mx+5x-m^{2}+25=0
Use the distributive property to multiply m+5 by x.
mx+5x+25=m^{2}
Add m^{2} to both sides. Anything plus zero gives itself.
mx+5x=m^{2}-25
Subtract 25 from both sides.
\left(m+5\right)x=m^{2}-25
Combine all terms containing x.
\frac{\left(m+5\right)x}{m+5}=\frac{m^{2}-25}{m+5}
Divide both sides by m+5.
x=\frac{m^{2}-25}{m+5}
Dividing by m+5 undoes the multiplication by m+5.
x=m-5
Divide m^{2}-25 by m+5.
mx+5x-m^{2}+25=0
Use the distributive property to multiply m+5 by x.
mx+5x+25=m^{2}
Add m^{2} to both sides. Anything plus zero gives itself.
mx+5x=m^{2}-25
Subtract 25 from both sides.
\left(m+5\right)x=m^{2}-25
Combine all terms containing x.
\frac{\left(m+5\right)x}{m+5}=\frac{m^{2}-25}{m+5}
Divide both sides by 5+m.
x=\frac{m^{2}-25}{m+5}
Dividing by 5+m undoes the multiplication by 5+m.
x=m-5
Divide m^{2}-25 by 5+m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}