Solve for m (complex solution)
m\in \mathrm{C}
Solve for n (complex solution)
n\in \mathrm{C}
Solve for m
m\in \mathrm{R}
Solve for n
n\in \mathrm{R}
Share
Copied to clipboard
mp+mq+2np+2nq=m\left(p+q\right)+2n\left(p+q\right)
Use the distributive property to multiply m+2n by p+q.
mp+mq+2np+2nq=mp+mq+2n\left(p+q\right)
Use the distributive property to multiply m by p+q.
mp+mq+2np+2nq=mp+mq+2np+2nq
Use the distributive property to multiply 2n by p+q.
mp+mq+2np+2nq-mp=mq+2np+2nq
Subtract mp from both sides.
mq+2np+2nq=mq+2np+2nq
Combine mp and -mp to get 0.
mq+2np+2nq-mq=2np+2nq
Subtract mq from both sides.
2np+2nq=2np+2nq
Combine mq and -mq to get 0.
\text{true}
Reorder the terms.
m\in \mathrm{C}
This is true for any m.
mp+mq+2np+2nq=m\left(p+q\right)+2n\left(p+q\right)
Use the distributive property to multiply m+2n by p+q.
mp+mq+2np+2nq=mp+mq+2n\left(p+q\right)
Use the distributive property to multiply m by p+q.
mp+mq+2np+2nq=mp+mq+2np+2nq
Use the distributive property to multiply 2n by p+q.
mp+mq+2np+2nq-2np=mp+mq+2nq
Subtract 2np from both sides.
mp+mq+2nq=mp+mq+2nq
Combine 2np and -2np to get 0.
mp+mq+2nq-2nq=mp+mq
Subtract 2nq from both sides.
mp+mq=mp+mq
Combine 2nq and -2nq to get 0.
\text{true}
Reorder the terms.
n\in \mathrm{C}
This is true for any n.
mp+mq+2np+2nq=m\left(p+q\right)+2n\left(p+q\right)
Use the distributive property to multiply m+2n by p+q.
mp+mq+2np+2nq=mp+mq+2n\left(p+q\right)
Use the distributive property to multiply m by p+q.
mp+mq+2np+2nq=mp+mq+2np+2nq
Use the distributive property to multiply 2n by p+q.
mp+mq+2np+2nq-mp=mq+2np+2nq
Subtract mp from both sides.
mq+2np+2nq=mq+2np+2nq
Combine mp and -mp to get 0.
mq+2np+2nq-mq=2np+2nq
Subtract mq from both sides.
2np+2nq=2np+2nq
Combine mq and -mq to get 0.
\text{true}
Reorder the terms.
m\in \mathrm{R}
This is true for any m.
mp+mq+2np+2nq=m\left(p+q\right)+2n\left(p+q\right)
Use the distributive property to multiply m+2n by p+q.
mp+mq+2np+2nq=mp+mq+2n\left(p+q\right)
Use the distributive property to multiply m by p+q.
mp+mq+2np+2nq=mp+mq+2np+2nq
Use the distributive property to multiply 2n by p+q.
mp+mq+2np+2nq-2np=mp+mq+2nq
Subtract 2np from both sides.
mp+mq+2nq=mp+mq+2nq
Combine 2np and -2np to get 0.
mp+mq+2nq-2nq=mp+mq
Subtract 2nq from both sides.
mp+mq=mp+mq
Combine 2nq and -2nq to get 0.
\text{true}
Reorder the terms.
n\in \mathrm{R}
This is true for any n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}