Solve for m
m = \frac{4 \sqrt{5}}{5} \approx 1.788854382
m = -\frac{4 \sqrt{5}}{5} \approx -1.788854382
Share
Copied to clipboard
m^{2}+4m+4+2\left(\frac{1}{2}m+2\right)^{2}+\left(4-m\right)^{2}=36
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(m+2\right)^{2}.
m^{2}+4m+4+2\left(\frac{1}{4}m^{2}+2m+4\right)+\left(4-m\right)^{2}=36
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{1}{2}m+2\right)^{2}.
m^{2}+4m+4+\frac{1}{2}m^{2}+4m+8+\left(4-m\right)^{2}=36
Use the distributive property to multiply 2 by \frac{1}{4}m^{2}+2m+4.
\frac{3}{2}m^{2}+4m+4+4m+8+\left(4-m\right)^{2}=36
Combine m^{2} and \frac{1}{2}m^{2} to get \frac{3}{2}m^{2}.
\frac{3}{2}m^{2}+8m+4+8+\left(4-m\right)^{2}=36
Combine 4m and 4m to get 8m.
\frac{3}{2}m^{2}+8m+12+\left(4-m\right)^{2}=36
Add 4 and 8 to get 12.
\frac{3}{2}m^{2}+8m+12+16-8m+m^{2}=36
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-m\right)^{2}.
\frac{3}{2}m^{2}+8m+28-8m+m^{2}=36
Add 12 and 16 to get 28.
\frac{3}{2}m^{2}+28+m^{2}=36
Combine 8m and -8m to get 0.
\frac{5}{2}m^{2}+28=36
Combine \frac{3}{2}m^{2} and m^{2} to get \frac{5}{2}m^{2}.
\frac{5}{2}m^{2}=36-28
Subtract 28 from both sides.
\frac{5}{2}m^{2}=8
Subtract 28 from 36 to get 8.
m^{2}=8\times \frac{2}{5}
Multiply both sides by \frac{2}{5}, the reciprocal of \frac{5}{2}.
m^{2}=\frac{16}{5}
Multiply 8 and \frac{2}{5} to get \frac{16}{5}.
m=\frac{4\sqrt{5}}{5} m=-\frac{4\sqrt{5}}{5}
Take the square root of both sides of the equation.
m^{2}+4m+4+2\left(\frac{1}{2}m+2\right)^{2}+\left(4-m\right)^{2}=36
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(m+2\right)^{2}.
m^{2}+4m+4+2\left(\frac{1}{4}m^{2}+2m+4\right)+\left(4-m\right)^{2}=36
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{1}{2}m+2\right)^{2}.
m^{2}+4m+4+\frac{1}{2}m^{2}+4m+8+\left(4-m\right)^{2}=36
Use the distributive property to multiply 2 by \frac{1}{4}m^{2}+2m+4.
\frac{3}{2}m^{2}+4m+4+4m+8+\left(4-m\right)^{2}=36
Combine m^{2} and \frac{1}{2}m^{2} to get \frac{3}{2}m^{2}.
\frac{3}{2}m^{2}+8m+4+8+\left(4-m\right)^{2}=36
Combine 4m and 4m to get 8m.
\frac{3}{2}m^{2}+8m+12+\left(4-m\right)^{2}=36
Add 4 and 8 to get 12.
\frac{3}{2}m^{2}+8m+12+16-8m+m^{2}=36
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-m\right)^{2}.
\frac{3}{2}m^{2}+8m+28-8m+m^{2}=36
Add 12 and 16 to get 28.
\frac{3}{2}m^{2}+28+m^{2}=36
Combine 8m and -8m to get 0.
\frac{5}{2}m^{2}+28=36
Combine \frac{3}{2}m^{2} and m^{2} to get \frac{5}{2}m^{2}.
\frac{5}{2}m^{2}+28-36=0
Subtract 36 from both sides.
\frac{5}{2}m^{2}-8=0
Subtract 36 from 28 to get -8.
m=\frac{0±\sqrt{0^{2}-4\times \frac{5}{2}\left(-8\right)}}{2\times \frac{5}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{5}{2} for a, 0 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{0±\sqrt{-4\times \frac{5}{2}\left(-8\right)}}{2\times \frac{5}{2}}
Square 0.
m=\frac{0±\sqrt{-10\left(-8\right)}}{2\times \frac{5}{2}}
Multiply -4 times \frac{5}{2}.
m=\frac{0±\sqrt{80}}{2\times \frac{5}{2}}
Multiply -10 times -8.
m=\frac{0±4\sqrt{5}}{2\times \frac{5}{2}}
Take the square root of 80.
m=\frac{0±4\sqrt{5}}{5}
Multiply 2 times \frac{5}{2}.
m=\frac{4\sqrt{5}}{5}
Now solve the equation m=\frac{0±4\sqrt{5}}{5} when ± is plus.
m=-\frac{4\sqrt{5}}{5}
Now solve the equation m=\frac{0±4\sqrt{5}}{5} when ± is minus.
m=\frac{4\sqrt{5}}{5} m=-\frac{4\sqrt{5}}{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}