Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

m^{2}+2m+1-4\left(m^{2}-4\right)<0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(m+1\right)^{2}.
m^{2}+2m+1-4m^{2}+16<0
Use the distributive property to multiply -4 by m^{2}-4.
-3m^{2}+2m+1+16<0
Combine m^{2} and -4m^{2} to get -3m^{2}.
-3m^{2}+2m+17<0
Add 1 and 16 to get 17.
3m^{2}-2m-17>0
Multiply the inequality by -1 to make the coefficient of the highest power in -3m^{2}+2m+17 positive. Since -1 is negative, the inequality direction is changed.
3m^{2}-2m-17=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
m=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3\left(-17\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 3 for a, -2 for b, and -17 for c in the quadratic formula.
m=\frac{2±4\sqrt{13}}{6}
Do the calculations.
m=\frac{2\sqrt{13}+1}{3} m=\frac{1-2\sqrt{13}}{3}
Solve the equation m=\frac{2±4\sqrt{13}}{6} when ± is plus and when ± is minus.
3\left(m-\frac{2\sqrt{13}+1}{3}\right)\left(m-\frac{1-2\sqrt{13}}{3}\right)>0
Rewrite the inequality by using the obtained solutions.
m-\frac{2\sqrt{13}+1}{3}<0 m-\frac{1-2\sqrt{13}}{3}<0
For the product to be positive, m-\frac{2\sqrt{13}+1}{3} and m-\frac{1-2\sqrt{13}}{3} have to be both negative or both positive. Consider the case when m-\frac{2\sqrt{13}+1}{3} and m-\frac{1-2\sqrt{13}}{3} are both negative.
m<\frac{1-2\sqrt{13}}{3}
The solution satisfying both inequalities is m<\frac{1-2\sqrt{13}}{3}.
m-\frac{1-2\sqrt{13}}{3}>0 m-\frac{2\sqrt{13}+1}{3}>0
Consider the case when m-\frac{2\sqrt{13}+1}{3} and m-\frac{1-2\sqrt{13}}{3} are both positive.
m>\frac{2\sqrt{13}+1}{3}
The solution satisfying both inequalities is m>\frac{2\sqrt{13}+1}{3}.
m<\frac{1-2\sqrt{13}}{3}\text{; }m>\frac{2\sqrt{13}+1}{3}
The final solution is the union of the obtained solutions.