Solve for k
k=\frac{5x^{2}+2}{x^{2}-4x+1}
x\neq \sqrt{3}+2\text{ and }x\neq 2-\sqrt{3}
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{\left(k-1\right)\left(3k+10\right)}+2k}{k-5}\text{; }x=\frac{-\sqrt{\left(k-1\right)\left(3k+10\right)}+2k}{k-5}\text{, }&k\neq 5\\x=\frac{3}{20}\text{, }&k=5\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{\left(k-1\right)\left(3k+10\right)}+2k}{k-5}\text{; }x=\frac{-\sqrt{\left(k-1\right)\left(3k+10\right)}+2k}{k-5}\text{, }&\left(k\neq 5\text{ and }k\geq 1\right)\text{ or }k\leq -\frac{10}{3}\\x=\frac{3}{20}\text{, }&k=5\end{matrix}\right.
Graph
Share
Copied to clipboard
kx^{2}-5x^{2}-4kx+k-2=0
Use the distributive property to multiply k-5 by x^{2}.
kx^{2}-4kx+k-2=5x^{2}
Add 5x^{2} to both sides. Anything plus zero gives itself.
kx^{2}-4kx+k=5x^{2}+2
Add 2 to both sides.
\left(x^{2}-4x+1\right)k=5x^{2}+2
Combine all terms containing k.
\frac{\left(x^{2}-4x+1\right)k}{x^{2}-4x+1}=\frac{5x^{2}+2}{x^{2}-4x+1}
Divide both sides by x^{2}-4x+1.
k=\frac{5x^{2}+2}{x^{2}-4x+1}
Dividing by x^{2}-4x+1 undoes the multiplication by x^{2}-4x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}