Solve for k
k=-\frac{4\left(1-2x-x^{2}\right)}{x\left(x+2\right)}
x\neq -2\text{ and }x\neq 0
Solve for x (complex solution)
x=\frac{\sqrt{\left(k-8\right)\left(k-4\right)}-k+4}{k-4}
x=\frac{-\sqrt{\left(k-8\right)\left(k-4\right)}-k+4}{k-4}\text{, }k\neq 4
Solve for x
x=\frac{\sqrt{\left(k-8\right)\left(k-4\right)}-k+4}{k-4}
x=\frac{-\sqrt{\left(k-8\right)\left(k-4\right)}-k+4}{k-4}\text{, }k\geq 8\text{ or }k<4
Graph
Share
Copied to clipboard
kx^{2}-4x^{2}+2\left(k-4\right)x+4=0
Use the distributive property to multiply k-4 by x^{2}.
kx^{2}-4x^{2}+\left(2k-8\right)x+4=0
Use the distributive property to multiply 2 by k-4.
kx^{2}-4x^{2}+2kx-8x+4=0
Use the distributive property to multiply 2k-8 by x.
kx^{2}+2kx-8x+4=4x^{2}
Add 4x^{2} to both sides. Anything plus zero gives itself.
kx^{2}+2kx+4=4x^{2}+8x
Add 8x to both sides.
kx^{2}+2kx=4x^{2}+8x-4
Subtract 4 from both sides.
\left(x^{2}+2x\right)k=4x^{2}+8x-4
Combine all terms containing k.
\frac{\left(x^{2}+2x\right)k}{x^{2}+2x}=\frac{4x^{2}+8x-4}{x^{2}+2x}
Divide both sides by x^{2}+2x.
k=\frac{4x^{2}+8x-4}{x^{2}+2x}
Dividing by x^{2}+2x undoes the multiplication by x^{2}+2x.
k=\frac{4\left(x^{2}+2x-1\right)}{x\left(x+2\right)}
Divide 4x^{2}+8x-4 by x^{2}+2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}