Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

k^{2}-5k+4=18
Use the distributive property to multiply k-4 by k-1 and combine like terms.
k^{2}-5k+4-18=0
Subtract 18 from both sides.
k^{2}-5k-14=0
Subtract 18 from 4 to get -14.
k=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-14\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -5 for b, and -14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-\left(-5\right)±\sqrt{25-4\left(-14\right)}}{2}
Square -5.
k=\frac{-\left(-5\right)±\sqrt{25+56}}{2}
Multiply -4 times -14.
k=\frac{-\left(-5\right)±\sqrt{81}}{2}
Add 25 to 56.
k=\frac{-\left(-5\right)±9}{2}
Take the square root of 81.
k=\frac{5±9}{2}
The opposite of -5 is 5.
k=\frac{14}{2}
Now solve the equation k=\frac{5±9}{2} when ± is plus. Add 5 to 9.
k=7
Divide 14 by 2.
k=-\frac{4}{2}
Now solve the equation k=\frac{5±9}{2} when ± is minus. Subtract 9 from 5.
k=-2
Divide -4 by 2.
k=7 k=-2
The equation is now solved.
k^{2}-5k+4=18
Use the distributive property to multiply k-4 by k-1 and combine like terms.
k^{2}-5k=18-4
Subtract 4 from both sides.
k^{2}-5k=14
Subtract 4 from 18 to get 14.
k^{2}-5k+\left(-\frac{5}{2}\right)^{2}=14+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}-5k+\frac{25}{4}=14+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
k^{2}-5k+\frac{25}{4}=\frac{81}{4}
Add 14 to \frac{25}{4}.
\left(k-\frac{5}{2}\right)^{2}=\frac{81}{4}
Factor k^{2}-5k+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k-\frac{5}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Take the square root of both sides of the equation.
k-\frac{5}{2}=\frac{9}{2} k-\frac{5}{2}=-\frac{9}{2}
Simplify.
k=7 k=-2
Add \frac{5}{2} to both sides of the equation.