Solve for k (complex solution)
\left\{\begin{matrix}k=-\frac{1+4y-3x}{x-y}\text{, }&x\neq y\\k\in \mathrm{C}\text{, }&x=-1\text{ and }y=-1\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{1+4y-ky}{k-3}\text{, }&k\neq 3\\x\in \mathrm{C}\text{, }&y=-1\text{ and }k=3\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=-\frac{1+4y-3x}{x-y}\text{, }&x\neq y\\k\in \mathrm{R}\text{, }&x=-1\text{ and }y=-1\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{1+4y-ky}{k-3}\text{, }&k\neq 3\\x\in \mathrm{R}\text{, }&y=-1\text{ and }k=3\end{matrix}\right.
Graph
Share
Copied to clipboard
kx-3x+\left(4-k\right)y+1=0
Use the distributive property to multiply k-3 by x.
kx-3x+4y-ky+1=0
Use the distributive property to multiply 4-k by y.
kx+4y-ky+1=3x
Add 3x to both sides. Anything plus zero gives itself.
kx-ky+1=3x-4y
Subtract 4y from both sides.
kx-ky=3x-4y-1
Subtract 1 from both sides.
\left(x-y\right)k=3x-4y-1
Combine all terms containing k.
\frac{\left(x-y\right)k}{x-y}=\frac{3x-4y-1}{x-y}
Divide both sides by x-y.
k=\frac{3x-4y-1}{x-y}
Dividing by x-y undoes the multiplication by x-y.
kx-3x+\left(4-k\right)y+1=0
Use the distributive property to multiply k-3 by x.
kx-3x+4y-ky+1=0
Use the distributive property to multiply 4-k by y.
kx-3x-ky+1=-4y
Subtract 4y from both sides. Anything subtracted from zero gives its negation.
kx-3x+1=-4y+ky
Add ky to both sides.
kx-3x=-4y+ky-1
Subtract 1 from both sides.
\left(k-3\right)x=-4y+ky-1
Combine all terms containing x.
\left(k-3\right)x=ky-4y-1
The equation is in standard form.
\frac{\left(k-3\right)x}{k-3}=\frac{ky-4y-1}{k-3}
Divide both sides by k-3.
x=\frac{ky-4y-1}{k-3}
Dividing by k-3 undoes the multiplication by k-3.
kx-3x+\left(4-k\right)y+1=0
Use the distributive property to multiply k-3 by x.
kx-3x+4y-ky+1=0
Use the distributive property to multiply 4-k by y.
kx+4y-ky+1=3x
Add 3x to both sides. Anything plus zero gives itself.
kx-ky+1=3x-4y
Subtract 4y from both sides.
kx-ky=3x-4y-1
Subtract 1 from both sides.
\left(x-y\right)k=3x-4y-1
Combine all terms containing k.
\frac{\left(x-y\right)k}{x-y}=\frac{3x-4y-1}{x-y}
Divide both sides by x-y.
k=\frac{3x-4y-1}{x-y}
Dividing by x-y undoes the multiplication by x-y.
kx-3x+\left(4-k\right)y+1=0
Use the distributive property to multiply k-3 by x.
kx-3x+4y-ky+1=0
Use the distributive property to multiply 4-k by y.
kx-3x-ky+1=-4y
Subtract 4y from both sides. Anything subtracted from zero gives its negation.
kx-3x+1=-4y+ky
Add ky to both sides.
kx-3x=-4y+ky-1
Subtract 1 from both sides.
\left(k-3\right)x=-4y+ky-1
Combine all terms containing x.
\left(k-3\right)x=ky-4y-1
The equation is in standard form.
\frac{\left(k-3\right)x}{k-3}=\frac{ky-4y-1}{k-3}
Divide both sides by k-3.
x=\frac{ky-4y-1}{k-3}
Dividing by k-3 undoes the multiplication by k-3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}