Solve for k (complex solution)
k=\frac{x^{2}+6x+1}{x^{2}+1}
x\neq -i\text{ and }x\neq i
Solve for k
k=\frac{x^{2}+6x+1}{x^{2}+1}
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{-\left(k-4\right)\left(k+2\right)}+3}{k-1}\text{; }x=\frac{-\sqrt{-\left(k-4\right)\left(k+2\right)}+3}{k-1}\text{, }&k\neq 1\\x=0\text{, }&k=1\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{\left(4-k\right)\left(k+2\right)}+3}{k-1}\text{; }x=\frac{-\sqrt{\left(4-k\right)\left(k+2\right)}+3}{k-1}\text{, }&k\neq 1\text{ and }k\leq 4\text{ and }k\geq -2\\x=0\text{, }&k=1\end{matrix}\right.
Graph
Share
Copied to clipboard
kx^{2}-x^{2}-6x+k-1=0
Use the distributive property to multiply k-1 by x^{2}.
kx^{2}-6x+k-1=x^{2}
Add x^{2} to both sides. Anything plus zero gives itself.
kx^{2}+k-1=x^{2}+6x
Add 6x to both sides.
kx^{2}+k=x^{2}+6x+1
Add 1 to both sides.
\left(x^{2}+1\right)k=x^{2}+6x+1
Combine all terms containing k.
\frac{\left(x^{2}+1\right)k}{x^{2}+1}=\frac{x^{2}+6x+1}{x^{2}+1}
Divide both sides by x^{2}+1.
k=\frac{x^{2}+6x+1}{x^{2}+1}
Dividing by x^{2}+1 undoes the multiplication by x^{2}+1.
kx^{2}-x^{2}-6x+k-1=0
Use the distributive property to multiply k-1 by x^{2}.
kx^{2}-6x+k-1=x^{2}
Add x^{2} to both sides. Anything plus zero gives itself.
kx^{2}+k-1=x^{2}+6x
Add 6x to both sides.
kx^{2}+k=x^{2}+6x+1
Add 1 to both sides.
\left(x^{2}+1\right)k=x^{2}+6x+1
Combine all terms containing k.
\frac{\left(x^{2}+1\right)k}{x^{2}+1}=\frac{x^{2}+6x+1}{x^{2}+1}
Divide both sides by x^{2}+1.
k=\frac{x^{2}+6x+1}{x^{2}+1}
Dividing by x^{2}+1 undoes the multiplication by x^{2}+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}