Solve for k
k=\sqrt{3}-1\approx 0.732050808
k=-\left(\sqrt{3}+1\right)\approx -2.732050808
Share
Copied to clipboard
k^{3}+6k^{2}+12k+8-k^{3}=20
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(k+2\right)^{3}.
6k^{2}+12k+8=20
Combine k^{3} and -k^{3} to get 0.
6k^{2}+12k+8-20=0
Subtract 20 from both sides.
6k^{2}+12k-12=0
Subtract 20 from 8 to get -12.
k=\frac{-12±\sqrt{12^{2}-4\times 6\left(-12\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 12 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-12±\sqrt{144-4\times 6\left(-12\right)}}{2\times 6}
Square 12.
k=\frac{-12±\sqrt{144-24\left(-12\right)}}{2\times 6}
Multiply -4 times 6.
k=\frac{-12±\sqrt{144+288}}{2\times 6}
Multiply -24 times -12.
k=\frac{-12±\sqrt{432}}{2\times 6}
Add 144 to 288.
k=\frac{-12±12\sqrt{3}}{2\times 6}
Take the square root of 432.
k=\frac{-12±12\sqrt{3}}{12}
Multiply 2 times 6.
k=\frac{12\sqrt{3}-12}{12}
Now solve the equation k=\frac{-12±12\sqrt{3}}{12} when ± is plus. Add -12 to 12\sqrt{3}.
k=\sqrt{3}-1
Divide -12+12\sqrt{3} by 12.
k=\frac{-12\sqrt{3}-12}{12}
Now solve the equation k=\frac{-12±12\sqrt{3}}{12} when ± is minus. Subtract 12\sqrt{3} from -12.
k=-\sqrt{3}-1
Divide -12-12\sqrt{3} by 12.
k=\sqrt{3}-1 k=-\sqrt{3}-1
The equation is now solved.
k^{3}+6k^{2}+12k+8-k^{3}=20
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(k+2\right)^{3}.
6k^{2}+12k+8=20
Combine k^{3} and -k^{3} to get 0.
6k^{2}+12k=20-8
Subtract 8 from both sides.
6k^{2}+12k=12
Subtract 8 from 20 to get 12.
\frac{6k^{2}+12k}{6}=\frac{12}{6}
Divide both sides by 6.
k^{2}+\frac{12}{6}k=\frac{12}{6}
Dividing by 6 undoes the multiplication by 6.
k^{2}+2k=\frac{12}{6}
Divide 12 by 6.
k^{2}+2k=2
Divide 12 by 6.
k^{2}+2k+1^{2}=2+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}+2k+1=2+1
Square 1.
k^{2}+2k+1=3
Add 2 to 1.
\left(k+1\right)^{2}=3
Factor k^{2}+2k+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+1\right)^{2}}=\sqrt{3}
Take the square root of both sides of the equation.
k+1=\sqrt{3} k+1=-\sqrt{3}
Simplify.
k=\sqrt{3}-1 k=-\sqrt{3}-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}