Solve for k
k=\frac{\sqrt{105}}{20}-\frac{1}{4}\approx 0.262347538
k=-\frac{\sqrt{105}}{20}-\frac{1}{4}\approx -0.762347538
Share
Copied to clipboard
k^{2}+\frac{1}{2}k+\frac{1}{16}-\frac{1}{16}-\frac{1}{5}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(k+\frac{1}{4}\right)^{2}.
k^{2}+\frac{1}{2}k-\frac{1}{5}=0
Subtract \frac{1}{16} from \frac{1}{16} to get 0.
k=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\left(-\frac{1}{5}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{1}{2} for b, and -\frac{1}{5} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\left(-\frac{1}{5}\right)}}{2}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
k=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+\frac{4}{5}}}{2}
Multiply -4 times -\frac{1}{5}.
k=\frac{-\frac{1}{2}±\sqrt{\frac{21}{20}}}{2}
Add \frac{1}{4} to \frac{4}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
k=\frac{-\frac{1}{2}±\frac{\sqrt{105}}{10}}{2}
Take the square root of \frac{21}{20}.
k=\frac{\frac{\sqrt{105}}{10}-\frac{1}{2}}{2}
Now solve the equation k=\frac{-\frac{1}{2}±\frac{\sqrt{105}}{10}}{2} when ± is plus. Add -\frac{1}{2} to \frac{\sqrt{105}}{10}.
k=\frac{\sqrt{105}}{20}-\frac{1}{4}
Divide -\frac{1}{2}+\frac{\sqrt{105}}{10} by 2.
k=\frac{-\frac{\sqrt{105}}{10}-\frac{1}{2}}{2}
Now solve the equation k=\frac{-\frac{1}{2}±\frac{\sqrt{105}}{10}}{2} when ± is minus. Subtract \frac{\sqrt{105}}{10} from -\frac{1}{2}.
k=-\frac{\sqrt{105}}{20}-\frac{1}{4}
Divide -\frac{1}{2}-\frac{\sqrt{105}}{10} by 2.
k=\frac{\sqrt{105}}{20}-\frac{1}{4} k=-\frac{\sqrt{105}}{20}-\frac{1}{4}
The equation is now solved.
k^{2}+\frac{1}{2}k+\frac{1}{16}-\frac{1}{16}-\frac{1}{5}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(k+\frac{1}{4}\right)^{2}.
k^{2}+\frac{1}{2}k-\frac{1}{5}=0
Subtract \frac{1}{16} from \frac{1}{16} to get 0.
k^{2}+\frac{1}{2}k=\frac{1}{5}
Add \frac{1}{5} to both sides. Anything plus zero gives itself.
k^{2}+\frac{1}{2}k+\left(\frac{1}{4}\right)^{2}=\frac{1}{5}+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}+\frac{1}{2}k+\frac{1}{16}=\frac{1}{5}+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
k^{2}+\frac{1}{2}k+\frac{1}{16}=\frac{21}{80}
Add \frac{1}{5} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(k+\frac{1}{4}\right)^{2}=\frac{21}{80}
Factor k^{2}+\frac{1}{2}k+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+\frac{1}{4}\right)^{2}}=\sqrt{\frac{21}{80}}
Take the square root of both sides of the equation.
k+\frac{1}{4}=\frac{\sqrt{105}}{20} k+\frac{1}{4}=-\frac{\sqrt{105}}{20}
Simplify.
k=\frac{\sqrt{105}}{20}-\frac{1}{4} k=-\frac{\sqrt{105}}{20}-\frac{1}{4}
Subtract \frac{1}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}