Evaluate
\left(\frac{k}{j}\right)^{12}
Expand
\left(\frac{k}{j}\right)^{12}
Share
Copied to clipboard
\left(j^{2}\right)^{-3}\left(k^{-1}\right)^{-3}\times \left(\frac{j^{2}}{k^{3}}\right)^{-3}
Expand \left(j^{2}k^{-1}\right)^{-3}.
j^{-6}\left(k^{-1}\right)^{-3}\times \left(\frac{j^{2}}{k^{3}}\right)^{-3}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
j^{-6}k^{3}\times \left(\frac{j^{2}}{k^{3}}\right)^{-3}
To raise a power to another power, multiply the exponents. Multiply -1 and -3 to get 3.
j^{-6}k^{3}\times \frac{\left(j^{2}\right)^{-3}}{\left(k^{3}\right)^{-3}}
To raise \frac{j^{2}}{k^{3}} to a power, raise both numerator and denominator to the power and then divide.
\frac{j^{-6}\left(j^{2}\right)^{-3}}{\left(k^{3}\right)^{-3}}k^{3}
Express j^{-6}\times \frac{\left(j^{2}\right)^{-3}}{\left(k^{3}\right)^{-3}} as a single fraction.
\frac{j^{-6}j^{-6}}{\left(k^{3}\right)^{-3}}k^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
\frac{j^{-12}}{\left(k^{3}\right)^{-3}}k^{3}
To multiply powers of the same base, add their exponents. Add -6 and -6 to get -12.
\frac{j^{-12}}{k^{-9}}k^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and -3 to get -9.
\frac{j^{-12}k^{3}}{k^{-9}}
Express \frac{j^{-12}}{k^{-9}}k^{3} as a single fraction.
j^{-12}k^{12}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\left(j^{2}\right)^{-3}\left(k^{-1}\right)^{-3}\times \left(\frac{j^{2}}{k^{3}}\right)^{-3}
Expand \left(j^{2}k^{-1}\right)^{-3}.
j^{-6}\left(k^{-1}\right)^{-3}\times \left(\frac{j^{2}}{k^{3}}\right)^{-3}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
j^{-6}k^{3}\times \left(\frac{j^{2}}{k^{3}}\right)^{-3}
To raise a power to another power, multiply the exponents. Multiply -1 and -3 to get 3.
j^{-6}k^{3}\times \frac{\left(j^{2}\right)^{-3}}{\left(k^{3}\right)^{-3}}
To raise \frac{j^{2}}{k^{3}} to a power, raise both numerator and denominator to the power and then divide.
\frac{j^{-6}\left(j^{2}\right)^{-3}}{\left(k^{3}\right)^{-3}}k^{3}
Express j^{-6}\times \frac{\left(j^{2}\right)^{-3}}{\left(k^{3}\right)^{-3}} as a single fraction.
\frac{j^{-6}j^{-6}}{\left(k^{3}\right)^{-3}}k^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
\frac{j^{-12}}{\left(k^{3}\right)^{-3}}k^{3}
To multiply powers of the same base, add their exponents. Add -6 and -6 to get -12.
\frac{j^{-12}}{k^{-9}}k^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and -3 to get -9.
\frac{j^{-12}k^{3}}{k^{-9}}
Express \frac{j^{-12}}{k^{-9}}k^{3} as a single fraction.
j^{-12}k^{12}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}