Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(j^{2}\right)^{-3}\left(k^{-1}\right)^{-3}\times \left(\frac{j^{2}}{k^{3}}\right)^{-3}
Expand \left(j^{2}k^{-1}\right)^{-3}.
j^{-6}\left(k^{-1}\right)^{-3}\times \left(\frac{j^{2}}{k^{3}}\right)^{-3}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
j^{-6}k^{3}\times \left(\frac{j^{2}}{k^{3}}\right)^{-3}
To raise a power to another power, multiply the exponents. Multiply -1 and -3 to get 3.
j^{-6}k^{3}\times \frac{\left(j^{2}\right)^{-3}}{\left(k^{3}\right)^{-3}}
To raise \frac{j^{2}}{k^{3}} to a power, raise both numerator and denominator to the power and then divide.
\frac{j^{-6}\left(j^{2}\right)^{-3}}{\left(k^{3}\right)^{-3}}k^{3}
Express j^{-6}\times \frac{\left(j^{2}\right)^{-3}}{\left(k^{3}\right)^{-3}} as a single fraction.
\frac{j^{-6}j^{-6}}{\left(k^{3}\right)^{-3}}k^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
\frac{j^{-12}}{\left(k^{3}\right)^{-3}}k^{3}
To multiply powers of the same base, add their exponents. Add -6 and -6 to get -12.
\frac{j^{-12}}{k^{-9}}k^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and -3 to get -9.
\frac{j^{-12}k^{3}}{k^{-9}}
Express \frac{j^{-12}}{k^{-9}}k^{3} as a single fraction.
j^{-12}k^{12}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\left(j^{2}\right)^{-3}\left(k^{-1}\right)^{-3}\times \left(\frac{j^{2}}{k^{3}}\right)^{-3}
Expand \left(j^{2}k^{-1}\right)^{-3}.
j^{-6}\left(k^{-1}\right)^{-3}\times \left(\frac{j^{2}}{k^{3}}\right)^{-3}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
j^{-6}k^{3}\times \left(\frac{j^{2}}{k^{3}}\right)^{-3}
To raise a power to another power, multiply the exponents. Multiply -1 and -3 to get 3.
j^{-6}k^{3}\times \frac{\left(j^{2}\right)^{-3}}{\left(k^{3}\right)^{-3}}
To raise \frac{j^{2}}{k^{3}} to a power, raise both numerator and denominator to the power and then divide.
\frac{j^{-6}\left(j^{2}\right)^{-3}}{\left(k^{3}\right)^{-3}}k^{3}
Express j^{-6}\times \frac{\left(j^{2}\right)^{-3}}{\left(k^{3}\right)^{-3}} as a single fraction.
\frac{j^{-6}j^{-6}}{\left(k^{3}\right)^{-3}}k^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
\frac{j^{-12}}{\left(k^{3}\right)^{-3}}k^{3}
To multiply powers of the same base, add their exponents. Add -6 and -6 to get -12.
\frac{j^{-12}}{k^{-9}}k^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and -3 to get -9.
\frac{j^{-12}k^{3}}{k^{-9}}
Express \frac{j^{-12}}{k^{-9}}k^{3} as a single fraction.
j^{-12}k^{12}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.