Solve for g
g = -\frac{65}{3} = -21\frac{2}{3} \approx -21.666666667
Share
Copied to clipboard
g+3=-2g-62
Use the distributive property to multiply -2 by g+31.
g+3+2g=-62
Add 2g to both sides.
3g+3=-62
Combine g and 2g to get 3g.
3g=-62-3
Subtract 3 from both sides.
3g=-65
Subtract 3 from -62 to get -65.
g=\frac{-65}{3}
Divide both sides by 3.
g=-\frac{65}{3}
Fraction \frac{-65}{3} can be rewritten as -\frac{65}{3} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}