Solve for f
f\neq 0
\left(x=\sqrt[3]{\frac{\sqrt{3981}}{18}+\frac{7}{2}}-\sqrt[3]{\frac{\sqrt{3981}}{18}-\frac{7}{2}}\text{ or }x=\sqrt[3]{\frac{\sqrt{3981}}{18}+\frac{7}{2}}\times \frac{-1+\sqrt{3}i}{2}-\frac{2\sqrt[3]{\frac{\sqrt{3981}}{18}-\frac{7}{2}}}{-1+\sqrt{3}i}\text{ or }x=-\sqrt[3]{\frac{\sqrt{3981}}{18}+\frac{7}{2}}\times \frac{1+\sqrt{3}i}{2}+\frac{2\sqrt[3]{\frac{\sqrt{3981}}{18}-\frac{7}{2}}}{1+\sqrt{3}i}\right)\text{ and }f\neq 0
Solve for x
x=\frac{18^{\frac{2}{3}}\left(1+\sqrt{3}i\right)\left(\sqrt[3]{\sqrt{3981}+63}+2\sqrt[3]{\sqrt{3981}-63}+\sqrt[3]{9\left(\sqrt{1327}+21\sqrt{3}\right)}i\right)}{72}
x = \frac{18 ^ {\frac{2}{3}} {(\sqrt[3]{\sqrt{3981} + 63} - \sqrt[3]{\sqrt{3981} - 63})}}{18} = 1.7392038612166936
x=\frac{18^{\frac{2}{3}}\left(-\sqrt{3}i+1\right)\left(-\sqrt[3]{9\left(\sqrt{1327}+21\sqrt{3}\right)}i+\sqrt[3]{\sqrt{3981}+63}+2\sqrt[3]{\sqrt{3981}-63}\right)}{72}\text{, }f\neq 0
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}