Solve for f
f=-\frac{2\left(2r^{2}-3r-1\right)}{3-2r}
r\neq \frac{3}{2}
Solve for r
r=\frac{\sqrt{f^{2}-6f+17}+f+3}{4}
r=\frac{-\sqrt{f^{2}-6f+17}+f+3}{4}
Share
Copied to clipboard
3f-2fr+3-2r+\left(2r+1\right)\left(2r-1\right)+\left(2r+2\right)\left(1-3\right)=0
Use the distributive property to multiply f+1 by 3-2r.
3f-2fr+3-2r+\left(2r\right)^{2}-1+\left(2r+2\right)\left(1-3\right)=0
Consider \left(2r+1\right)\left(2r-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
3f-2fr+3-2r+2^{2}r^{2}-1+\left(2r+2\right)\left(1-3\right)=0
Expand \left(2r\right)^{2}.
3f-2fr+3-2r+4r^{2}-1+\left(2r+2\right)\left(1-3\right)=0
Calculate 2 to the power of 2 and get 4.
3f-2fr+2-2r+4r^{2}+\left(2r+2\right)\left(1-3\right)=0
Subtract 1 from 3 to get 2.
3f-2fr+2-2r+4r^{2}+\left(2r+2\right)\left(-2\right)=0
Subtract 3 from 1 to get -2.
3f-2fr+2-2r+4r^{2}-4r-4=0
Use the distributive property to multiply 2r+2 by -2.
3f-2fr+2-6r+4r^{2}-4=0
Combine -2r and -4r to get -6r.
3f-2fr-2-6r+4r^{2}=0
Subtract 4 from 2 to get -2.
3f-2fr-6r+4r^{2}=2
Add 2 to both sides. Anything plus zero gives itself.
3f-2fr+4r^{2}=2+6r
Add 6r to both sides.
3f-2fr=2+6r-4r^{2}
Subtract 4r^{2} from both sides.
\left(3-2r\right)f=2+6r-4r^{2}
Combine all terms containing f.
\frac{\left(3-2r\right)f}{3-2r}=\frac{2+6r-4r^{2}}{3-2r}
Divide both sides by 3-2r.
f=\frac{2+6r-4r^{2}}{3-2r}
Dividing by 3-2r undoes the multiplication by 3-2r.
f=\frac{2\left(1+3r-2r^{2}\right)}{3-2r}
Divide 2+6r-4r^{2} by 3-2r.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}