Skip to main content
Solve for d (complex solution)
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Solve for d
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(dy\right)^{2}-2d^{2}xy-3\left(dx\right)^{2}=0
Multiply d and d to get d^{2}.
d^{2}y^{2}-2d^{2}xy-3\left(dx\right)^{2}=0
Expand \left(dy\right)^{2}.
d^{2}y^{2}-2d^{2}xy-3d^{2}x^{2}=0
Expand \left(dx\right)^{2}.
\left(y^{2}-2xy-3x^{2}\right)d^{2}=0
Combine all terms containing d.
d^{2}=\frac{0}{y^{2}-2xy-3x^{2}}
Dividing by y^{2}-2xy-3x^{2} undoes the multiplication by y^{2}-2xy-3x^{2}.
d^{2}=0
Divide 0 by y^{2}-2xy-3x^{2}.
d=0 d=0
Take the square root of both sides of the equation.
d=0
The equation is now solved. Solutions are the same.
\left(dy\right)^{2}-2d^{2}xy-3\left(dx\right)^{2}=0
Multiply d and d to get d^{2}.
d^{2}y^{2}-2d^{2}xy-3\left(dx\right)^{2}=0
Expand \left(dy\right)^{2}.
d^{2}y^{2}-2d^{2}xy-3d^{2}x^{2}=0
Expand \left(dx\right)^{2}.
\left(y^{2}-2xy-3x^{2}\right)d^{2}=0
Combine all terms containing d.
d=\frac{0±\sqrt{0^{2}}}{2\left(y^{2}-2xy-3x^{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute y^{2}-2xy-3x^{2} for a, 0 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{0±0}{2\left(y^{2}-2xy-3x^{2}\right)}
Take the square root of 0^{2}.
d=\frac{0}{2\left(y-3x\right)\left(x+y\right)}
Multiply 2 times y^{2}-2xy-3x^{2}.
d=0
Divide 0 by 2\left(y-3x\right)\left(y+x\right).